schmiso 2010-01-24T08:33:33Z
Favorite Answer
x∙y' - y = √(x² + y²) <=> y' = √(x² + y²)/x + y/x <=> y' = √( (x² + y²)/x² ) + y/x <=> y' = √(1 + (y/x)²) + y/x So you have a ordinary first order differential equation of the form y' = F(y/x) a so called first order homogeneous differential equation. You can convert is to a separable first order equation by substituting y/x. Let u = y/x <=> y = x∙u => y' = x∙u' + u y' = √(1 + (y/x)²) + y/x <=> x∙u' + u = √(1 + u²) + u <=> u' = du/dx = (1/x)∙√(1 + u²) <=> (1/√(1 + u²)) du = (1/x) dx => ∫ (1/√(1 + u²)) du = ∫ (1/x) dx Left hand side integral can be solved by trigonometric substitution: u = tan(t) => du = (tan²(t) + 1) dt => ∫ (1/√(1 + u²)) du = ∫ (tan²(t) + 1)/√(1 + tan²(t)) dt = ∫ √(tan²(t) + 1) dt < since tan²(t) + 1 = sec²(t) = ∫ sec(t) dt = ln(sec(t) + tan(t)) = ln(√(tan²(t) + 1) + tan(t)) = ln(√(u² + 1) + u) Hence, ∫ (1/√(1 + u²)) du = ∫ (1/x) dx <=> ln(√(u² + 1) + u) = ln(x) + c <=> √(u² + 1) + u = e^( ln(x) + c ) = e^(c)∙e^(ln(x)) = e^(c)∙x set C = e^(c) √(u² + 1) + u = C∙x <=> √((y/x)² + 1) + (y/x) = C∙x <=> √(y² + x²) + y = C∙x² <=> √(y² + x²) = C∙x² - y <=> y² + x² = (C∙x² - y)² <=> y² + x² = (C²∙x⁴ - 2∙C∙x²∙y + y² <=> 2∙C∙x²∙y = (C²∙x⁴ - x²) <=> y = (C/2)∙x² - 1/(/2∙C) set C' = 2∙C y = 4∙C'∙x² - 1/C'...Show more