Like number theory problems?
Let A be an even integer such that A^2 + 1 be composite. Can you always find (a,b) integers with b odd, such that a^2+b^2 = A^2+1, and 10*b > A.
Related to
http://answers.yahoo.com/question/index;_ylt=AqKV8JShAdS.IvwspU7HI5fFDH1G;_ylv=3?qid=20130109021747AAoS0ON
If not, counterexamples welcome, smallest wins...
@ Josh K. The question is for all A such that xxx, consider the highest b: do you necessarily have b/A > 1/10.
So either you prove it for all A, not just A = 8, or you disprove it, which Rita the Dog did.