?
f(x) = ((3x - 4)/(2x + 2))⁻⁵ => ((2x + 2)/(3x - 4))⁵
=> (2x + 2)⁵/(3x - 4)⁵
Now, if f(x) = u/v, f '(x) = (u'v - uv')/v²
so, u = (2x + 2)⁵, so u' = 10(2x + 2)⁴
and v = (3x - 5)⁵, so v' = 15(3x - 5)⁴
Hence, f '(x) => [10(2x + 2)⁴(3x - 5)⁵ - 15(3x - 5)⁴(2x + 2)⁵]/(3x - 5)¹⁰
or, 5(2x + 2)⁴(3x - 5)⁴[2(3x - 5) - 3(2x + 2)]/(3x - 5)¹⁰
=> 5(2x + 2)⁴(3x - 5)⁴[-16]/(3x - 5)¹⁰
i.e. f '(x) = -80(2x + 2)⁴/(3x - 5)⁶
:)>