cidyah
∫ x^3 e^(x^2) dx /(x^2+1)^2 
= ∫ x x^2 e^(x^2) dx /(x^2+1)^2 
Let t= x^2
dt = 2x dx
x dx = (1/2) dt 
∫ x x^2 e^(x^2) dx /(x^2+1)^2 dx = (1/2)  ∫ t e^t /(t+1)^2 dt
Integrate  ∫ t e^t /(t+1)^2 dt by parts
dv = 1/(t+1)^2 dt ; v= -1/(t+1)
u = t e^t ; du = (e^t + t e^t) dt
∫ u dv = u v - ∫ v du
∫ t e^t /(t+1)^2 dt = - e^t t / (1+t) -  ∫ ( -1/(t+1)) (e^t + t e^t) dt
∫ t e^t /(t+1)^2 dt = - e^t t / (1+t) +  ∫ e^t dt /(t+1) +   ∫ t e^t dt /(t+1) 
∫ t e^t dt /(t+1)  =  ∫ (t+1-1) e^t dt /(t+1) = ∫ e^t dt - ∫ e^t dt /(t+1)
∫ t e^t /(t+1)^2 dt = - e^t t / (1+t) +  ∫ e^t dt /(t+1) +  [  ∫ e^t dt + ∫ e^t dt /(t+1) ]
∫ t e^t /(t+1)^2 dt = - e^t t / (1+t) +  ∫ e^t dt /(t+1) +    ∫ e^t dt - ∫ e^t dt /(t+1) 
∫ t e^t /(t+1)^2 dt = - e^t t / (1+t) -   ∫ e^t dt 
∫ t e^t /(t+1)^2 dt = - e^t t / (1+t) +   e^t
(1/2)  ∫ t e^t /(t+1)^2 dt = - e^t t / (2(1+t)) +   (1/2) e^t
replace t by x^2
= - e^(x^2) x^2 / (2(1+x^2)) +   (1/2) e^(x^2) 
= - e^(x^2) x^2 / (2+2x^2) +   (1/2) e^(x^2) + C