Is it true that for every positive integer n, the integer 1+10^(22n-11) is divisible by 11^2?
If so how do you prove it?
If so how do you prove it?
?
Favorite Answer
True
11²=121
1+10^(22n-11) = 1+10^[11(2n-1)]
prove 121|1+10^[11(2n-1)]
121| (10^11 + 1) is true
10^11 ≡ -1 mod 121
10^(11(2n-1)) ≡ -1^(2n-1) mod 121
2n-1 is odd
-1^(odd) = -1
10^(11(2n-1)) ≡ -1 mod 121
1+10^(11(2n-1)) ≡ 0 mod 121
121 | 1+10^(11(2n-1))
QED
Also proof by induction works.