Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
what are the present environmental hazards?as a human what shall we do to solve it?
i want it 4 ma project
1 Answer
- 1 decade agoFavorite Answer
Physical Hazards, and their Adverse Health Effects
Although you will have heard or read a great deal about the environmental consequences of global warming, man will probably be affected through famine, or war long before the health of the population as a whole is harmed to a serious degree by the temperature change. However increasing extremes of temperature, as a result of climatic change, could result in increased mortality even in temperate climates.
Important issues concerning physical hazards include those relating to health effects of electromagnetic radiation and ionising radiation. If one excludes the occupational environment, then noise and other physical hazards may present a nuisance to many inhabitants, and impair general well being. Environmental noise does not usually contribute to deafness but notable exceptions may include noisy discotheques and "personal stereos".
Electromagnetic radiation ranges from low frequency,relatively low energy, radiation such as radio and microwaves through to infra red, visible light, ultraviolet, X-rays and gamma rays. These last as well as other forms of radioactivity such as high energy subatomic particles (e.g. electrons - Beta rays) can cause intracellular ionisation and are therefore called ionising radiation. Exposure to ultraviolet (UV) radiation carries a increased risk of skin cancer such as melanoma, and of cataracts which are to an extent exposure related. Some pollutants such as chlorofluorocarbons (CFCs) used as refrigerants or in aerosol propellants or in the manufacture of certain plastics can damage the "ozone layer" in the higher atmosphere (stratosphere) and thus allow more UV light to reach us, and harm us directly. Ultraviolet light may also cause harm indirectly by contributing to an increase in ozone in the troposphere (the air we breathe) - see below under chemical hazards, or elsewhere in connection with air quality.
Radioactivity is associated with an exposure dependent risk of some cancers notably leukaemia. Contrary to popular belief however, most radiation to which the average person is exposed is natural in origin, and, of the man made sources, medical diagnosis and treatment is on average the largest source to the individual. A very important issue is the extent to which radon gas arising from certain rock types beneath dwellings can contribute to cancer risk. According to some estimates it could result in a few thousand cancer deaths per year in the U.K. (but still probably less than one twentieth of the cancer deaths alone caused by tobacco smoking).
Ionising radiation from the nuclear industry and from fallout from detonations contributes less than 1% of the annual average dose to inhabitants of the U.K. The explanation for leukaemia clusters around nuclear power plants is not yet resolved. Similar clustering can occur in other parts of the country. The effect of viral infections associated with population shifts may be important but requires further study.
Non ionising electrical, magnetic or electromagnetic fields are an increasing focus of attention. The scientific evidence of adverse health effects from general environmental exposure to these fields is "not proven". If there are adverse effects yet to be proven, the risk is probably likely to be very small.
--------------------------------------------------------------------------------
Chemical Hazards, and their Adverse Health Effects
If one includes tobacco smoke as an environmental hazard then it probably represents the single biggest known airborne chemical risk to health, whether measured in terms of death rates or ill-health (from lung cancer, other lung disease such as chronic bronchitis and emphysema, and disease of the heart, especially, and of blood vessels and other parts of the body). To a much lesser degree of risk, these adverse effects apply to non-smokers exposed passively to sidestream tobacco smoke.
General airborne pollution arises from a variety of causes but can usefully be subdivided into pollution from combustion or from other sources. The image shows the silhouette of a power station - an important source of airborne products of combustion.
Combustion of coal and other solid fuels can produce smoke (containing polycyclic aromatic hydrocarbons - PAH) and sulphur dioxide besides other agents such as those also produced by:
Combustion of liquid petroleum products which can generate carbon monoxide, oxides of nitrogen and other agents. Industry and incineration can generate a wide range of products of combustion such as oxides of sulphur and nitrogen, polycyclic aromatic hydrocarbons, dioxins etc. Combustion of any fossil fuel generates varying amounts of particulate matter. It also adds to the environmental burden of carbon dioxide - an important "green house" gas but in these low concentrations it does not affect human health directly. Combustion of fuel can also generate hazardous substances in other