Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Equation of a conic section and describe it?
The general equation of a conic section is 4x^2-y^2-8x-2y-1=0.....
How would I write the equation of this conic section in standard form and how would you describe it???
Thnx in advance!
2 Answers
- HemantLv 71 decade agoFavorite Answer
We have
4x² - y² - 8x - 2y - 1 = 0
( 4x² - 8x ) - ( y² + 2y + 1 ) = 0
4( x² - 2x ) - ( y + 1 )² = 0
4( x² - 2x + 1 ) - 4 - ( y + 1 )² = 0
4( x - 1 )² - ( y + 1 )² = 4
Dividing both sides by 4,
[ ( x - 1 )² ] - [ ( y + 1 )² / 4 ] = 1
( X² / 1² ) - ( Y² / 2 ² ) = 1, ............ where ... X = x - 1, ... Y = y + 1
................................................................................................................................................
This equation represents a Hyperbola.
Its center is ≡ ( X=0, Y=0 ) ≡ ( x-1=0, y+1=0 ) ≡ ( 1, -1 ),
semi-transverse axis = a = 1
semi-conjugate axis = b = 2.
.................................................................................................................................................
Happy To Help !
..................................................................................................................................................
- santmann2002Lv 71 decade ago
The center is x=1 y=-1
Making the translation to this point
X=x-1
Y=y+1
4(X+1)^2-((Y-1)^2-8X+8-2Y+2-1=0
4X^2+8X+4 -Y^2+2Y-1-8X+8-2Y+2-1=0
so 4X^2-Y^2 =-12 so Y^2/12-X^2/3 =1 It´s a Hyperbole With it´s foca axis parallel to Oy
a^2=12 and b^2 =3
Check numbers