Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
derivative of f(x)=√(x^2+4x) using the formal definition of a derivative?
formal def of a derivative: (f(x+h)-f(x))/h
1 Answer
- EMLv 78 years agoFavorite Answer
lim {sqrt[(x + h)² + 4(x + h)] - sqrt[x² + 4x]} / h =
h->0
lim {sqrt[(x + h)² + 4(x + h)] - sqrt[x² + 4x]}{sqrt[(x + h)² + 4(x + h)] + sqrt[x² + 4x]} / (h{sqrt[(x + h)² + 4(x + h)] + sqrt[x² + 4x]}) =
h->0
lim {[(x + h)² + 4(x + h)] - [x² + 4x]} / (h{sqrt[(x + h)² + 4(x + h)] + sqrt[x² + 4x]}) =
h->0
lim {x² + 2xh + h² + 4x + 4h - x² - 4x} / (h{sqrt[(x + h)² + 4(x + h)] + sqrt[x² + 4x]}) =
h->0
lim {2xh + h² + 4h} / (h{sqrt[(x + h)² + 4(x + h)] + sqrt[x² + 4x]}) =
h->0
lim {2x + h + 4} / {sqrt[(x + h)² + 4(x + h)] + sqrt[x² + 4x]} =
h->0
(2x + 4) / {2sqrt[x² + 4x]} =
(x + 2) / sqrt[x² + 4x]