Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Surface area of a spheroid?
The general formula for a spheroid is the following:
(x^2 + y^2)/a^2 + z^2/c^2 = 1
where this spheroid has semi-axis at x,y = a and z = c.
How would I compute the surface area of this?
I was specifically looking at an oblate spheroid specifically.
2 Answers
- EugeneLv 77 years agoFavorite Answer
Parametrize the surface using R(u,v) = (a cos(u) sin(v), a sin(u) sin(v), c cos(v)), 0 ≤ u ≤ 2π, 0 ≤ v ≤ π. Then R_u = (-a sin(u) sin(v), a cos(u) sin(v), 0) and R_v = (a cos(u) cos(v), a sin(u) cos(v), -c sin(v)). Thus R_u x R_v = (-ac cos(u) sin^2(v), -ac sin(u) sin^2(v), -a^2 sin(v) cos(v)). The norm of R_u x R_v is
||R_u x R_v|| = √(a^2 c^2 cos^2(u) sin^4(v) + a^2 c^2 sin^2(u) sin^4(v) + a^4 sin^2(v) cos^2(v))
= √(a^2 c^2 sin^4(v) (cos^2(u) + sin^2(u)) + a^4 sin^2(v) cos^2(v))
= √(a^2 c^2 sin^2(v) sin^2(v) + a^4 sin^2(v) cos^2(v))
= √(a^2 sin^2(v) (c^2 sin^2(v) + a^2 cos^2(v))
= a sin(v) √(c^2 sin^2(v) + a^2 cos^2(v)).
So the surface area of A is
∫[0, π] ∫[0, 2π] ||R_u x R_v|| du dv
= ∫[0, π] ∫[0, 2π] a sin(v) √(c^2 sin^2(v) + a^2 cos^2(v)) du dv
= 2πa ∫[0, π] sin(v) √(c^2 sin^2(v) + a^2 cos^2(v)) dv.
For reference, I'll let S(a,c) represent that last integral. When c = a, the integral reduces to 2πa ∫[0, π] sin(v) a dv = 4πa^2. When c > a,
S(a,c) = 2πa ∫[0, π] sin(v) √(c^2 + (a^2 - c^2)cos^2(v)) dv
= 2πa ∫[0, π] sin(v) • c√(1 - e^2 cos^2(v)) dv, with e^2 = 1 - a^2 / c^2
= 2πac ∫[-e, e] √(1 - x^2) dx/e, setting x = e cos(v)
= 4πac/e ∫[0, e] √(1 - x^2) dx.
Let J = ∫[0, e] √(1 - x^2) dx. By integration by parts,
∫[0, e] √(1 - x^2) dx = x√(1 - x^2) (from x = 0 to e) - ∫[0, e] x d/dx(√(1 - x^2)) dx
= e√(1 - e^2) - ∫[0, e] x(-x/√(1 - x^2)) dx
= e√(1 - e^2) + ∫[0, e] x^2/√(1 - x^2) dx
= e√(1 - e^2) + ∫[0, e] (1/√(1 - x^2) - √(1 - x^2)) dx
= e√(1 - e^2) + sin^-1(x) (from x = 0 to e) - J
= e√(1 - e^2) + sin^-1(e) - J.
So 2J = e√(1 - e^2) + sin^-1(e), or,
J = (1/2)(e√(1 - e^2) + sin^-1(e)).
Consequently,
S(a,c) = (4πac/e)J = 2πa(c√(1 - e^2) + (c/e) sin^-1(e))
= 2πa(c√(a^2/c^2) + (c/e)sin^-1(e))
= 2πa(a + (c/e)sin^-1(e))
= 2πa^2 (1 + (c/ae) sin^-1(e)).
If c < a, then
S(a,c) = 2πa ∫[0, π] sin(v) √(c^2 + (a^2 - c^2) cos^2(v)) dv
= 2πa ∫[0, π] sin(v) a√(c^2/a^2 + (1 - c^2/a^2) cos^2(v)) dv
= 2πa^2 ∫[0, π] sin(v) √((1 - e^2) + e^2 cos^2(v)) dv, with e^2 = 1 - c^2/a^2
= 2πa^2 ∫[0, π] sin(v) √(1 - e^2) √(1 + [e^2/(1 - e^2)] cos^2(v)] dv
= 2πa^2√(1 - e^2) ∫[-e/√(1 - e^2), e/√(1 - e^2)] √(1 + x^2) dx √(1 - e^2)/e
(substituting x = e/√(1 - e^2) cos(v))
= 2πa^2 (1 - e^2)/e • 2∫[0, e/√(1 - e^2)] √(1 + x^2) dx.
Let K = ∫[0, e/√(1 - e^2)] √(1 + x^2) dx. Integration by parts yields
K = x√(1 + x^2) (from x = 0 to e/√(1 - e^2)) - ∫[0, e/√(1 - e^2)] x d/dx(√(1 + x^2)) dx
= e/√(1 - e^2) • √(1 + e^2/(1 - e^2)) - ∫[0, e/√(1 - e^2)] x^2/√(1 + x^2) dx
= e/√(1 - e^2) • 1/√(1 - e^2) - ∫[0, e/√(1 - e^2)] (√(1 + x^2) - 1/√(1 + x^2)) dx
= e/(1 - e^2) - K + ∫[0, e/√(1 - e^2)] dx/√(1 + x^2) dx
= e/(1 - e^2) - K + sinh^-1(x) (from x = 0 to e/√(1 - e^2))
= e/(1 - e^2) - K + sinh^-1(e/√(1 - e^2)
= e/(1 - e^2) - K + tanh^-1(e).
Thus, 2K = e/(1 - e^2) + tanh^-1(e), or,
K = (1/2)[e/(1 - e^2) + tanh^-1(e)].
Finally,
S(a,c) = 2πa^2 (1 - e^2)/e • 2K
= 2πa^2 (1 - e^2)/e • [e/(1 - e^2) + tanh^-1(e)]
= 2πa^2 (1 + [(1 - e^2)/e] tanh^-1(e)).
In summary,
S(a,c) = 4πa^2 if c = a
S(a,c) = 2πa^2 (1 + (c/ae) sin^-1(e)) if c > a
S(a,c) = 2πa^2 (1 + [(1 - e^2)/e] tanh^-1(e)) if c < a.
In particular, for the oblate spheroid (where c < a), the latter formula for S(a,c) is its surface area.
- MichaelLv 77 years ago
Well,
it depends on wether:
c<a (oblate spheroid like Earth): Sob = 2pia^2(1+(1-e^2)/e tanh^-1(x))
where e^2 = 1 - (c^2/a^2) excentricity
and
c>a (prolate like football or rugby): Spro=2pia^2(1+ c/ae si^n^-1e)
hope it' ll help !!
PS: see § 2 of the link
Source(s): https://en.wikipedia.org/wiki/Spheroid