Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
1 Answer
- Don LeonLv 67 years agoFavorite Answer
The idea is solving the indefinite integral first, then plug in the bound at the end of your calculation.
∫�� e^(-0.5(x+y)) dy dx
= ∫∫ e^(-0.5x -0.5y) dy dx
= ∫∫ e^(-0.5x).e^(-0.5y) dy dx
= ∫ e^(-0.5x) (∫ e^(-0.5y) dy) dx
∫ e^(-0.5y) dy
Suppose -0.5 y= p, so: -0.5 dy= dp, then:
1/(-0.5)∫ -0.5*e^(-0.5y) dy
= 1/(-0.5) ∫ e^p dp
= -2 (e^p) +C
= -2e^(-0.5y) +C
From y=0 to x, we got:
= -2e^(-0.5x) + 2e^(0), then:
∫ e^(-0.5x)*(-2e^(-0.5x)+2) dx
= ∫ 2e^(-0.5x) -2e^(-x) dx
The integral ∫ 2e^(-0.5 x) dx is:
-2*(1/0.5) ∫ 0.5*e^(-0.5x) dx
= -4(e^(-0.5x)) +C
and the integral ∫-2e^(-x) dx is:
= 2∫ -e^(-x) dx
= 2*e^(-x) +C
Substituting the value and we got:
= ∫ 2e^(-0.5x) -2e^(-x) dx
= -4(e^(-0.5x)) +2e^(-x) +C
For x=0 to infinity we got:
= -4(e^inf) -2e^inf -(-4e^(0) +2e^(0))
= (0)-(-4+2)
= -(-2)
= 2