Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Trigonometric identities?
Simplify the following:
1. cot(x) - tan(x)
2. (1/cosec^2(x) -1) + sin^2(x) + cos^2(x)
3 Answers
- ?Lv 72 months agoFavorite Answer
1) cot(x) - tan(x)
= (cos(x)/sin(x)) - (sin(x)/cos(x))
= (cos^2(x) - sin^2(x)) / sin(x)cos(x)
= cos(2x) / sin(x)cos(x)
= cos(2x) / (1/2)sin(2x)
= (1 / (1/2))(cos(2x)/sin(2x))
= 2 cot(2x).
----------
2) If the first term is supposed to be 1/(cosec^2(x) - 1), this is what you get:
(1 / (cosec^2(x) - 1)) + sin^2(x) + cos^2(x)
= (1/cot^2(x)) + sin^2(x) + cos^2(x)
= (1/cot^2(x)) + 1
= tan^2(x) + 1
= sec^2(x).
If instead the first term is as you typed, follow Wayne's steps.
- la consoleLv 72 months ago
= cot(x) - tan(x) → you know that: cot(x) = cos(x)/sin(x)
= [cos(x)/sin(x)] - tan(x) → you know that: tan(x) = sin(x)/cos(x)
= [cos(x)/sin(x)] - [sin(x)/cos(x)]
= [cos²(x) + sin²(x)]/[sin(x).cos(x)] → recall: cos²(x) + sin²(x) = 1
= 1/[sin(x).cos(x)] → to go further
= [1/sin(x)].[1/cos(x)]
= csc(x).sec(x)
= {1/[csc²(x) - 1]} + sin²(x) + cos²(x) → recall: cos²(x) + sin²(x) = 1
= {1/[csc²(x) - 1]} + 1
= {1 + [csc²(x) - 1]}/[csc²(x) - 1]
= {1 + csc²(x) - 1}/[csc²(x) - 1]
= csc²(x)/[csc²(x) - 1] → you know that: csc(x) = 1/sin(x)
= {1/sin²(x)]/[{1/sin²(x)} - 1]
= {1/sin²(x)]/[{1 - sin²(x)}/sin²(x)]
= 1/[1 - sin²(x)] → you know that: cos²(x) + sin²(x) = 1
= 1/[cos²(x) + sin²(x) - sin²(x)]
= 1/cos²(x)
= sec²(x)
- Wayne DeguManLv 72 months ago
1) cotx => cosx/sinx
tanx => sinx/cosx
so, cotx - tanx = cosx/sinx - sinx/cosx
i.e. (cos²x - sin²x)/sinxcosx
=> cos2x/sinxcosx
or, 2cos2x/2sinxcosx
i.e. 2cos2x/sin2x
=> 2cot2x
2) I will assume that by (1/cosec²x - 1) you mean:
(1/cosec²x) - 1
i.e. (1/(1/sin²x)) - 1
=> sin²x - 1
so, sin²x - 1 + sin²x + cos²x
or, sin²x - 1 + 1
Hence, sin²x
:)>