I want to know (i)^i?
z= (0 + 1i) ^i ; i = √ -1
z= (0 + 1i) ^i ; i = √ -1
GoldenFibonacci
Favorite Answer
Use Euler's theorem:
e^(ix) = (e^x)^i
By Euler's Theorem, e^(ipi/2+2pi*k)=i
So i^i = e^(-pi/2)*e^(2ipi*k) = e^(-pi/2)
Anonymous
In polar form:
i = cos(Ï/2) + i sin(Ï/2) ==> i = e^(iÏ/2).
Applying exponential rules:
i^i
=> [e^(iÏ/2)]^i
= e^(iÏ/2 * i)
= e^(i * i * Ï/2)
= e^(i^2 * Ï/2)
= e^(-Ï/2).
I hope this helps!
Time Splinters
i^i = e^(-pi/2)