Verify the identity Sin^3x + (Sinx) cos^2x = sinx?

AHHH! Trig is so confusing!

panic mode2011-02-14T19:53:31Z

Favorite Answer

divide everything by sin(x) and you get
sin^2x+cos^2x=1 which is basic identity

Rameshwar2011-02-15T04:01:14Z

L.H.S. = sin^3x + sinx cos^2x
= sinx ( sin^2x + cos^2x )
= sinx (1)= sinx =R.H.S.

William B2011-02-15T03:53:50Z

sin^3x +sinxcos^2x =
sinx(sin^2x +cos^2x)=
sinx (1)=
sinx

Brach Z2011-02-15T04:32:41Z

Show that sin³x + sin x cos²x = sin x.

Recall that sin²x + cos²x = 1.

Therefore,

sin³x + sin x cos²x

= sin³x + sin x (1 - sin²x)

= sin³x + sin x - sin³x

= sin x.

Or alternatively,

sin³x + sin x cos²x

= (sin x) (sin²x + cos²x)

= (sin x) (1)

= sin x.

MechEng20302011-02-15T04:01:04Z

factoring out a sin(x) on the l.h.s:

sin(x)[sin²(x) + cos²(x)] = sin(x)*1 = sin(x)