How do you prove trig identity?
tan(x/2)(2cotx + tan(x/2)) = 1
this* -_-
tan(x/2)(2cotx + tan(x/2)) = 1
this* -_-
L. E. Gant
Favorite Answer
first:let's use u = x/2 ( to simplify the writing
tan(u)( 2cot(2u)+ tan(u))
now, cot (2u) = 1/tan(2u) and tan(2u) = 2tan(u)/(1 - tan^2(u))
so cot (2u) = (1-tan^2(u))/2 tan(u)
so...
tan(u)( 2cot(2u)+ tan(u))
= tan(u) (2(1-tan^2(u))/2tan(u) + tan(u))
=tan(u) (1 - tan^2(u)/tan(u) + tan(u))
= 1 - tan^2(u) + tan^2(u)
= 1
Q.E.D.
M
tan(x/2)(2cotx + tan(x/2))
=> tan(x/2)(2[1 - tan^2(x/2)]/2tan(x/2) + tan(x/2))
=> tan(x/2)([1 - tan^2(x/2)]/tan(x/2) + tan(x/2))
=> [1 - tan^2(x/2)] + tan^2(x/2))
=> 1