What are the factors of the given expressions?
1).
27x^4 - 54x^3 + 36x^2 - 10x + 1
2).
27x^4 - 27x^3 - x + 1
1).
27x^4 - 54x^3 + 36x^2 - 10x + 1
2).
27x^4 - 27x^3 - x + 1
?
Favorite Answer
1).
27x^4 - 54x^3 + 36x^2 - 10x + 1
= (3x^2 - 4x + 1)(9x^2 - 6x + 1)
= (3x - 1)(x - 1)(3x - 1)^2
= (x - 1)(3x - 1)^3
2).
27x^4 - 27x^3 - x + 1
= (3x^2 - 4x + 1)(9x^2 + 3x + 1)
= (3x - 1)(x - 1)(9x^2 + 3x + 1)
?
1. The expression is difficult to factor.So we use the following procedure:
x-a is a factor if, when a is substituted into x in the given expression, the answer is 0.
Possible values of a are in the form: (factor of the constant) / (factor of the leading coefficient).
In this case, the constant is 1 and the leading coefficient is 27.
Possible values of a are : +/- 1, 1/3, 1/9, 1/27.
Let's try 1.
27x^4 - 54x^3 + 36x^2 - 10x + 1 when x=1 gives 0.
Thus, (x-1) is a factor.
We then divide 27x^4 - 54x^3 + 36x^2 - 10x + 1 by (x-1) for ease in looking for the other factors:
27x^4 - 54x^3 + 36x^2 - 10x + 1 / (x-1) = 27x^3 - 27x^2 + 9x - 1
Now, 27x^3 - 27x^2 + 9x - 1 is easier to factor:
= (27x^3 -1) - (27x^2 - 9x)
= (3x-1)(9x^2 + 3x + 1) - 9x(3x-1) <-----difference of 2 cubes!
= (3x-1)(9x^2 + 3x + 1 - 9x)
= (3x-1)(9x^2 - 6x + 1)
= (3x-1)(3x-1)^2
= (3x-1)^3
The factors of 27x^4 - 54x^3 + 36x^2 - 10x + 1 are (x-1)(3x-1)^3
2. 27x^4 - 27x^3 - x + 1
This time, we can factor more easily.
= 27x^3(x-1) - (x-1)
= (27x^3 - 1)(x-1)
=(3x-1)(9x^2 + 3x + 1)(x-1) <---- difference of 2 cubes!
?
1).
27x^4 - 54x^3 + 36x^2 - 10x + 1
= (x - 1)*(27*x^3 - 27*x^2 + 9*x - 1)
= (x - 1)*(3*x - 1)*(9*x^2 - 6*x + 1)
= (x - 1)*(3*x - 1)*(3*x - 1)^2
= (x - 1)*(3*x - 1)^3 <<<
2).
27x^4 - 27x^3 - x + 1
= 27*x^3*(x - 1) - (x - 1)
= (x - 1)*(27^x^3 - 1)
= (x - 1)*((3^x)^3 - 1)
= (x - 1)*(3*x - 1)*(9^x^2 + 3*x + 1) <<<
Pranil
1).
27x^4 - 54x^3 + 36x^2 - 10x + 1
sum of coefficients
27 – 54 + 36 – 10 + 1 = 0
so (x – 1) is a factor of it
find other factor by synthetic division or by long division
1| 27 – 54 + 36 – 10 + 1
------- + 27 – 27 + 9 – 1
-----------------------------------------
--- 27 – 27 + 9 – 1 + 0
so other factor is
(27x³ – 27x² + 9x – 1)
= (27x³ – 1 – 27x² + 9x )
= (27x³ – 1) – (27x² – 9x )
= (3x – 1)(9x² + 3x + 1) – 9x(3x – 1)
= (3x – 1)(9x² + 3x + 1 – 9x)
= (3x – 1)(9x² – 6x + 1)
= (3x – 1)³
27x^4 - 54x^3 + 36x^2 - 10x + 1
= (x – 1)(3x – 1)³
27x^4 - 27x^3 - x + 1
= 27x^3(x - 1) - 1(x – 1)
= (27x^3 - 1) (x – 1)
= (3x^3 - 1)(9x² + 3x + 1) (x – 1)
-----