Como
r² = 25 + 4
r² = 29
r = √29
tan ∅ = - 2/5
∅ = 180° - 21•8 °
∅ = 158•2°
Point √29 /_158•2°
Engr. Ronald
(-5,2)
r = √(x^2 + y^2)
r = √[(-5)^2 + 2^2]
r = 5.385
solving for the angle..
θ = tan^(-1) = y/x = 2/(-5) = 158.19°
?
r^2 = 25+4
r = √29
θ = arctan(-2/5) = 158.2°
(√29,158.2°)
alex
Rule
point (a,b)
to polar [r, θ] , with
r = √ (a^2+b^2)
θ = cos^-1 (a/r) , if a<0
Φ² = Φ+1
r = √((-5)² + 2²) = √29 so
(-5,2) = ( √29, atan2(2, -5) ) polar ≈ (5.385, 158.2°) polar