Captain Matticus, LandPiratesInc 2019-09-04T05:20:03Z
Favorite Answer
Well, you have 2 unknowns and 2 points. Set up a system of equations, solve for c and k, then find T(0) 415 = 75 + c * e^(-10k) 340 = c * e^(-10k) 347 = 75 + c * e^(-20k) 272 = c * e^(-20k) 340 = c * e^(-10k) 272 = c * e^(-20k) 340 / 272 = c * e^(-10k) / (c * e^(-20k)) 340/272 = (c/c) * e^(-10k - (-20k)) 4 * 85 / (4 * 68) = 1 * e^(20k - 10k) 85/68 = e^(10k) ln(85/68) = 10k (1/10) * ln(85/68) = k 340 = c * e^(-10k) 340 = c * e^(-10 * (1/10) * ln(85/68)) 340 = c * e^(-ln(85/68)) 340 = c * e^(ln(68/85)) 340 = c * (68/85) 340 * 85 / 68 = c 85 * 85 * 4 / 68 = c 85 * 85 / 17 = c 85 * 5 = c 425 = c Of course, I just realized, while working out the problem, that 85/68 can be further reduced. I'm not too quick on my 17's table sometimes T(t) = 75 + c * e^(-kt) c = 425 k = (1/10) * ln(85/68) = (1/10) * ln(5/4) T(t) = 75 + 425 * e^((-1) * (1/10) * ln(5/4) * t) T(t) = 75 + 425 * e^((1/10) * ln(4/5) * t) T(t) = 75 + 425 * (4/5)^(t/10) T(0) = 75 + 425 * (4/5)^(0/10) T(0) = 75 + 425 * 1 T(0) = 500 Initial temperature is 500 F...Show more