Mean and Standard Deviation of Y.?

Based on extensive testing, it is determined by the manufacturer of a washing machine that the time Y (in years) before a major repair is required is characterized by the probability density function 
𝑓(𝑦) = { 0.25 𝑒 ^−𝑦/4,     𝑦 ≥ 0 
            0,                     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

(A) Find the mean and standard deviation of Y. 

Alan2020-02-29T05:21:13Z

Favorite Answer

both standard deviation and mean = 4 
mean =∫ integral y*f(y) dx  
mean = from 0 to infinity ∫0.25y *e^(-y/4) dy   
mean = from 0 to infinity  0.25 ∫y *e^(-y/4) dy   
integration by parts
let u = y 
du = 1 
let v' = e^(-y/4) 
v = 4e^(-y/4)   
∫udv = uv - ∫vdu 
∫y *e^(-y/4) dy    =from 0 to inf. | (y*4e^(-y/4)   - ∫e^(-y/4) dy    
∫y *e^(-y/4) dy =  from 0 to inf. | y*4e^(-y/4)  - 16e^(-y/4)   
∫y *e^(-y/4) dy =  infintiy*e^(-infinity/4) - 16e^(-infinity/4)- (-16e^(0)) 
- 16e^(-infinity/4) =0 
 infinty*e^(-infinity/4)= infinity * zero 
so you must use limit to show , it is really zero
y/ e^(y/4)  = l'hopital rule 1/e^(y/4) = e^(-y/4) = 0 
∫y *e^(-y/4) dy = 16e^0 = 16  

mean = from 0 to infinity 0.25*16 = 4  
mean = 4 
variance  = E(y^2) -(mean)^2 =   E(y^2) -16 
E(y^2) =0.25∫y ^2*e^(-y/4) dy 
if you 
let u = y^2 
du = 2y 
v' = e^(-y/4)
v = -4e^(-y/4) 
E(x^2)   =  0.25*[ y^2*-4e^(-y/4) -  ∫2y*-4e^(-y/4) dy ]
E(x^2) = 0.25*[ y^2*-4e^(-y/4) - 8∫y*e^(-y/4) dy ]

we already  did ∫y *e^(-y/4) dy  and know it equals -16  
and again the first term contributes 0 if you work it out again 
E(x^2)  =    0.25 *[0  -(-8*16) ]  =  32  
Variance  = 32 -16 = 16 
standard deviation = sqrt(variance)  =  sqrt(16)  = 4