llaffer
Favorite Answer
if:
f(x) = [g(x)]³
Then we can set up the chain rule:
f = u³ and u = g(x)
df/du = 3u² and du/dx = g'(x)
so:
df/dx = df/du * du/dx
df/dx = 3u² g'(x)
df/dx = 3[g(x)]² g'(x)
or:
f'(x) = 3[g(x)]² g'(x)
You are to find f'(5), so we substitute our values for x:
f'(5) = 3[g(5)]² g'(5)
We know what g(5) and g'(5) are so we can substitute those:
f'(-5) = 3(-3)² * 6
And simplify:
f'(-5) = 18(9)
f'(-5) = 162