Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
How are the Sun’s magnetic field and its activity cycle related?
2. Describe the layers of gas above the Sun’s visible surface.
3. How does energy produced in the core of the Sun reach the surface? How long does it take?
4. How are the Sun’s magnetic field and its activity cycle related?
2 Answers
- 1 decade agoFavorite Answer
hydrogens, helium, and other materils.
The sun is a huge, glowing sphere of hot gas. Most of this gas is hydrogen (about 70%) and helium (about 28%). Carbon, nitrogen and oxygen make up 1.5% and the other 0.5% is made up of small amounts of many other elements such as neon, iron, silicon, magnesium and sulfur. The sun shines because it is burning hydrogen into helium in its extremely hot core. This means that as time goes on, the sun has less hydrogen and more helium.
The Sun is a huge, glowing ball at the center of our solar system. The sun provides light, heat, and other energy to Earth. The sun is made up entirely of gas. Most of it is a type of gas that is sensitive to magnetism. This sensitivity makes this type of gas so special that scientists sometimes give it a special name: plasma. Nine planets and their moons, tens of thousands of asteroids, and trillions of comets revolve around the sun. The sun and all these objects are in the solar system. Earth travels around the sun at an average distance of about 92,960,000 miles (149,600,000 kilometers) from it.
The sun's radius (distance from its center to its surface) is about 432,000 miles (695,500 kilometers), approximately 109 times Earth's radius. The following example may help you picture the relative sizes of the sun and Earth and the distance between them: Suppose the radius of Earth were the width of an ordinary paper clip. The radius of the sun would be roughly the height of a desk, and the sun would be about 100 paces from Earth.
The part of the sun that we see has a temperature of about 5500 degrees C (10,000 degrees F). Astronomers measure star temperatures in a metric unit called the Kelvin (abbreviated K). One Kelvin equals exactly 1 Celsius degree (1.8 Fahrenheit degree), but the Kelvin and Celsius scales begin at different points. The Kelvin scale starts at absolute zero, which is -273.15 degrees C (- 459.67 degrees F). Thus, the temperature of the solar surface is about 5800 K. Temperatures in the sun's core reach over 15 million K.
The sun is a star with a diameter of approximately 864,000 miles (1,390,000 kilometers), about 109 times the diameter of Earth. The largest stars have a diameter about 1,000 times that of the sun. Image credit: NASA/NSSDC
The energy of the sun comes from nuclear fusion reactions that occur deep inside the sun's core. In a fusion reaction, two atomic nuclei join together, creating a new nucleus. Fusion produces energy by converting nuclear matter into energy.
The sun, like Earth, is magnetic. Scientists describe the magnetism of an object in terms of a magnetic field. This is a region that includes all the space occupied by the object and much of the surrounding space. Physicists define a magnetic field as the region in which a magnetic force could be detected -- as with a compass. Physicists describe how magnetic an object is in terms of field strength. This is a measure of the force that the field would exert on a magnetic object, such as a compass needle. The typical strength of the sun's field is only about twice that of Earth's field.
But the sun's magnetic field becomes highly concentrated in small regions, with strengths up to 3,000 times as great as the typical strength. These regions shape solar matter to create a variety of features on the sun's surface and in its atmosphere, the part that we can see. These features range from relatively cool, dark structures known as sunspots to spectacular eruptions called flares and coronal mass ejections.
Flares are the most violent eruptions in the solar system. Coronal mass ejections, though less violent than flares, involve a tremendous mass (amount of matter). A single ejection can spew approximately 20 billion tons (18 billion metric tons) of matter into space. A cube of lead 3/4 mile (1.2 kilometers) on a side would have about the same mass.
The sun was born about 4.6 billion years ago. It has enough nuclear fuel to remain much as it is for another 5 billion years. Then it will grow to become a type of star called a red giant. Later in the sun's life, it will cast off its outer layers. The remaining core will collapse to become an object called a white dwarf, and will slowly fade. The sun will enter its final phase as a faint, cool object sometimes called a black dwarf.
This article discusses Sun (Characteristics of the sun) (Zones of the sun) (Solar activity) (Evolution of the sun) (Studying the sun) (History of modern solar study).
Characteristics of the sun
Mass and density
The sun has 99.8 percent of the mass in the solar system. The sun's mass is roughly 2 X 1027 tons. This number would be written out as a 2 followed by 27 zeros. The sun is 333,000 times as massive as Earth. The sun's average density is about 90 pounds per cubic foot (1.4 grams per cubic centimeter). This is about 1.4 times the density of water and less than one-third of Earth's average density.
Composition
- Anonymous5 years ago
tenZ is off the deep end and has no idea what he's talking about. First of all, pole reversals take thousands of years. It's not something that happens on one day. If it was going to happen in 2012 it would already be happening. And it's not, so it won't. Second, the geologic record of pole reversals does not correlate in any way to the geologic record of mass extinctions. Life on earth, for the most part, does not even know that the reversal has happened. They go on with their day to day business as normal. IF it were to happen in 2012 (like I already said, it won't, but IF) then it would affect our electronic instruments, but's it's not something we can't deal with. Third, the mayans did not predict a pole reversal. They predicted a new age of improved awareness. They predicted 2012 to be a time of enlightenment, not destruction. You should be able to tell he's delusional when he says things like "These secrets are contained in the Labyrinth of Hawara, a huge complex consisting of three thousand rooms." However, if you still doubt it, read where he said "When they arrive there, they will join into a super-duper powerful "ring current."" and rest assured that he is nothing more than a nutball. "Everybody knows that when you change the poles of an electric motor, it will start turning the other way." Untrue. What you mean to say is when you change the *polarity* of an electric motor. It's not the same thing. There are no wires connected to the north and south poles of the earth.