Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Anonymous
Anonymous asked in Science & MathematicsBiology · 10 years ago

Different digestive system features between herbivores?

Can someone please tell me the system features of foregut fermenting herbivores and hindegut fermenting herbivores?

1 Answer

Relevance
  • 10 years ago
    Favorite Answer

    Depending on the position of the fermentation chamber relative to the stomach, two types of gut fermentation can be distinguished. In foregut fermenters, the fermentation chamber is anterior to the stomach (e.g. rumen or crop), whereas it is posterior to the stomach (e.g. colon or caecum) in hindgut fermenters. Both digestive methods have advantages and disadvantages. Foregut fermenters are more efficient at breaking down cellulose, and bacteria lost from the chamber can be digested and serve as a source of protein. Fermentative digestion in the foregut furthermore allows for microbial detoxification early in the digestive process, so that enzymatic digestion in subsequent parts of the gut is not impeded by toxins. However, it is a slow process and the easily digestible cellular contents of the food are largely lost to the fermenting microbes before being exposed to the animal’s own digestion, making foregut fermentation less suitable for high-quality forages. Additionally, the intake of food is limited and particle size has to be reduced before it can be passed on to the stomach, which ruminants achieve by regurgitating and re-chewing their food.

    Hindgut fermentation is assumed to be the phylogenetically older method and is found in many mammals (e.g. horses, elephants, rhinoceroses, rabbits, some rodents and koalas), herbivorous birds, such as grouse, and some reptiles (e.g. iguanines and the green turtle Chelonia mydas). It has been suggested that also most (if not all) herbivorous dinosaurs (e.g. Triceratops, brachiosaurs and hadrosaurs) were hindgut fermenters. Foregut fermentation is a prime example of evolutionary convergence as it has arisen independently in different animal groups. While it is best known from ruminant mammals, such as cattle, giraffes and camels, it also occurs in sloths, colobine monkeys (including the langurs), some rodents and macropodid and potoroid marsupials (kangaroos and their relatives). Intriguingly, foregut fermentation is not unique to mammals, but is employed by some birds as well. It has been extensively studied in the hoatzin (Opisthocomus hoazin), a curious South American bird, while its occurrence in two other birds (the green-rumped parrotlet Forpus passerinus and the speckled mousebird Colius striatus) is somewhat less well known. The convergence also has an important molecular context in the repeated recruitment of lysozyme as a digestive enzyme.

    It should be noted, however, that such modifications of the digestive system are not necessarily a must for herbivorous animals. The giant panda (Ailuropoda melanoleuca), for instance, eats huge amounts of bamboo and probably utilises gut microbes to help with digestion, but it possesses the digestive system of its carnivorous relatives and lacks the gut specialisations found in other herbivores. The takahe (Porphyrio hochstetteri), an endangered flightless bird endemic to New Zealand, takes up large quantities of grass and shows no obvious gut specialisations either.

Still have questions? Get your answers by asking now.