Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Evaluate definite integral ∫[(x-x^3)^(1/3)]/x^4 dx from 1/3 to 1?
Please use an easy approach. The answer is 6
3 Answers
- HemantLv 710 years agoFavorite Answer
I = ∫ [ ( x - x³ )¹ʹ³ / x⁴ ] dx ... on [ 1/3, 1 ]
I = ∫ { x³ [ (x/x³) - 1 ] }¹ʹ³ / x⁴ dx
I = ∫ { [ x ( xֿ² - 1 )¹ʹ³ ] / x⁴ } dx
I = ∫ (xֿ² - 1)¹ʹ³ · xֿ³ dx ............................ (1)
____________________________
Let : u = xֿ² - 1.
Then : du/dx = -2.xֿ³
i.e., : xֿ³ dx = (-1/2) du.
_____________________________
Then, from (1),
I = ∫ u¹ʹ³ · (-1/2) du
I = (-1/2) · [ ( u⁴ʹ³ ) / (4/3) ]
I = (-3/8) [ (xֿ² - 1)⁴ʹ³ ] .............. on [ 1/3, 1 ]
I = (-3/8) [ (1-1)⁴ʹ³ - (9-1)⁴ʹ³ ]
I = (-3/8) [ 0 - (2³)⁴ʹ³ ]
I = (-3/8)( -16)
I = 6 ................................................ Ans.
___________________________
Happy To Help !
___________________________
- 10 years ago
x = sin(t)
dx = cos(t) * dt
(sin(t) - sin(t)^3)^(1/3) * cos(t) * dt / sin(t)^4 =>
(sin(t) * (1 - sin(t)^2))^(1/3) * cos(t) * dt / sin(t)^4 =>
(sin(t) * cos(t)^2)^(1/3) * cos(t) * dt / sin(t)^4 =>
sin(t)^(1/3) * cos(t)^(2/3) * cos(t) * dt / sin(t)^4 =>
sin(t)^(-11/3) * cos(t)^(5/3) * dt =>
cos(t)^(5/3) * dt / sin(t)^(11/3) =>
(cos(t) / sin(t))^(5/3) * dt / sin(t)^(6/3) =>
(cos(t) / sin(t))^(5/3) * csc(t)^2 * dt =>
cot(t)^(5/3)* csc(t)^2 * dt
cot(t) = m
dm = -csc(t)^2 * dt
-m^(5/3) * dm
Integrate
-m^(8/3) * (3/8) + C =>
(-3/8) * m^(8/3) + C =>
(-3/8) * cot(t)^(8/3) + C =>
(-3/8) * cos(t)^(8/3) / sin(t)^(8/3) + C =>
(-3/8) * (sqrt(1 - sin(t)^2))^(8/3) / sin(t)^(8/3) + C =>
(-3/8) * (1 - sin(t)^2)^(4/3) / sin(t)^(8/3) + C =>
(-3/8) * (1 - x^2)^(4/3) / x^(8/3) + C =>
(-3/8) * (1 - x^2)^(4/3) / (x^2)^(4/3) + C =>
(-3/8) * ((1 - x^2) / x^2)^(4/3) + C
From 1/3 to 1
(-3/8) * ((1 - (1)^2 / 1^2)^(4/3) + (3/8) * ((1 - (1/3)^2) / (1/3)^2)^(4/3) =>
(3/8) * (((8/9) / (1/9))^(4/3) - ((0/1)^(4/3)) =>
(3/8) * (8/1)^(4/3) =>
(3/8) * 2^4 =>
(3/8) * 16 =>
3 * 2 =>
6
- IndicaLv 710 years ago
â« = â« (xâx³)^(1/3)] / x⁴dx, [x=â ,1]
Looking at the form of Captain's answer I couldn't help but notice …
â« = â« (x‾²â1)^(1/3) x‾³ dx = â« (x‾²â1)^(1/3) (-½)d(x‾²â1) dx = -½ * ¾ * (x‾²â1)^(4/3)