Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

? asked in Science & MathematicsMathematics · 10 years ago

Integral of xe^x dx with substution please?

can someone help solve this one:

integral of xe^x dx

Thanks,

Update:

xe^x−e^x+C

4 Answers

Relevance
  • ?
    Lv 7
    10 years ago
    Favorite Answer

    u = x . . . . . dv = e^x dx

    du = dx . . . . v = e^x

    ∫ u dv = u v - ∫ v du

    ∫ x e^x dx = x e^x - ∫ e^x dx

    ∫ x e^x dx = x e^x - e^x + C

    Mαthmφm

  • ?
    Lv 6
    10 years ago

    you can use substitution but you are going to end up using integration by parts anyways.

    u=x

    du=1

    dv=e^x

    v=e^x

    xe^x-integral[e^x]

    xe^x-e^x+C.

    with substituion.

    t=x

    dx=dt

    integral of te^tdt. As you see here this is the same form as xe^x. And x=t so using substitution doesn't really make this problem easier.

  • 10 years ago

    Let u = x; du = dx and dv = e^xdx; v = e^x

    Then use ∫udv = uv-∫vdu

  • 10 years ago

    (x-1)(e^x)

    Source(s): Doing this multiple times
Still have questions? Get your answers by asking now.