Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
I have some problems >?
1) The velocity of a particle is given by v=100 + 280e^-kt ms^-1 . If the velocity decreases by 20% after 50 seconds , find the % decrease in velocity after 3 minutes .
2)The formula for the acceleration of a particle is given by A=5x-e^2x +3 where x is the displacement of the particle . If the acceleration of the particle is at a constant rate of -9.8ms^-2 , find the rate of change of its displacement when the displacement is -0.3m .
please show me ur working out
2 Answers
- ted sLv 79 years agoFavorite Answer
1. ≈ 73.4% decrease...v(50 ) = 0.8 v(0) = 8 * 38 ≡ 100 + 280 e^(-50k)---->
ln [ ( 8*38 -100) / 280 ] = - k50----> k ≈ 15.83---> v(300) ≈ 100--->(280/380) ≈ .734
#2...makes little sense...you 1st imply that acceleration is dependent upon position
and then 2nd you say it is constant !!...which ??
I will , for the sake of doing some work , assume that at some value for x
that the acceleration is - 9.8 and we wish to know the velocity at that point...
these x values are ≈ 1.55 and - 2.55.....v = 2.5 x² - 0.5 e^(2x) + 3x + C...v(0) = -0.5 + C
thus v(x) = 2.5 x² - 0.5 e^(2x) + 3x + 0.5 + v(0)...now let x = one of the values
- Mark S, JPAALv 79 years ago
This is an educated guess for the first one:
Take the derivative of the equation to obtain dV/dt. Then set this equal to 0.2 (which is 20%), substitute 5/6 (50 sec, which is 5/6 of a minute) for t and solve for k. When you have that, substitute 3 in for t and solve to get dV/dt after 3 min.