Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
log₂₀₁₁(2010x) = log₂₀₁₀(2011x)?
Please provide details on how you got the solution.
2 Answers
- Let'squestionLv 79 years agoFavorite Answer
Let log₂₀₁₁(2010x) = log₂₀₁₀(2011x) = ⁿ. we have
2011ⁿ = 2010x -------------------- Eqn 1 and
2010ⁿ = 2011x -------------------- Eqn 2; dividing Eqn 1 by Eqn 2 we get
(2011/2010)ⁿ = (2010/2011) or
[{(2011/2010)ⁿ}/(2010/2011)] = 1 or
(2011/2010)ⁿ⁺¹ = 1 or
ⁿ⁺¹ = ⁰ or
ⁿ = ⁻¹ ----------------------------------------- Equation 3
Now multiplying Eqn 1 and Eqn 2, we get
(2011*2010)ⁿ = (2010*2011)*x² or
x² = (2011*2010)ⁿ⁻¹ = (2011*2010)⁻² or
x = 1/(2010*2011)
[As we know that e^(ln a) = a. I get the same answer as Iggy Rocko]
- Iggy RockoLv 79 years ago
log(base 2011)(2010x) = log(base 2010)(2011x)
ln(2010x)/ln2011 = ln(2011x)/ln2010
(ln2010 + lnx)/ln2011 = (ln2011 + lnx)/ln2010
ln2010/ln2011 + lnx/ln2011 = ln2011/ln2010 + lnx/ln2010
lnx/ln2011 - lnx/ln2010 = ln2011/ln2010 - ln2010/ln2011
ln2011ln2010[ lnx/ln2011 - lnx/ln2010 = ln2011/ln2010 - ln2010/ln2011 ]
ln2010lnx - ln2011lnx = (ln2011)^2 - (ln2010)^2
lnx(ln2010 - ln2011) = (ln2011)^2 - (ln2010)^2
lnx = (ln2011 + ln2010)(ln2011 - ln2010)/(ln2010 - ln2011)
lnx = -ln2011 - ln2010
x = e^(-ln2011 - ln2010)