Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Integral of (x+3)sqrt[(3-4x-x^2)]dx?

BA up grabs

2 Answers

Relevance
  • 5 years ago
    Favorite Answer

    Hello,

    ∫ (x + 3) √(3 - 4x - x²) dx =

    let's complete the square inside the root by adding and subtracting 4:

    ∫ (x + 3) √(3 + 4 - 4 - 4x - x²) dx =

    ∫ (x + 3) √[7 - (x² + 4x + 4)] dx =

    ∫ (x + 3) √[7 - (x + 2)²] dx =

    (rewriting the radicand as a difference of two squares)

    ∫ (x + 3) √[(√7)² - (x + 2)²] dx =

    let:

    x + 2 = (√7)sinθ

    x = (√7)sinθ - 2

    dx = (√7)cosθ dθ

    yielding, by trig substitution:

    ∫ (x + 3) √[(√7)² - (x + 2)²] dx = ∫ {[(√7)sinθ - 2] + 3} √{(√7)² - [(√7)sinθ]²} dx =

    ∫ [(√7)sinθ - 2 + 3] [√(7 - 7sin²θ)] (√7)cosθ dθ =

    ∫ [(√7)sinθ + 1] {√[7(1 - sin²θ)]} (√7)cosθ dθ =

    (replacing 1 - sin²θ with cos²θ)

    ∫ [(√7)sinθ + 1] [√(7cos²θ)] (√7)cosθ dθ =

    ∫ [(√7)sinθ + 1] (√7)cosθ (√7)cosθ dθ =

    ∫ [(√7)sinθ + 1] (√7)²cos²θ dθ =

    ∫ [(√7)sinθ + 1] 7cos²θ dθ =

    ∫ [7(√7)cos²θ sinθ + 7cos²θ] dθ =

    let's rewrite the argument of the second cos²θ as (2θ)/2:

    ∫ {7(√7)cos²θ sinθ + 7cos²[(2θ)/2]} dθ =

    let's apply (to cos²[(2θ)/2]) the half-angle formula cos²(α/2) = (1 + cos α)/2:

    ∫ {7(√7)cos²θ sinθ + 7{[1 + cos(2θ)] /2} } dθ =

    ∫ {7(√7)cos²θ sinθ + (7/2)[1 + cos(2θ)]} dθ =

    ∫ [7(√7)cos²θ sinθ + (7/2) + (7/2)cos(2θ)] dθ =

    (splitting into three integrals and factoring constants out)

    7(√7) ∫ cos²θ sinθ dθ + (7/2) ∫ dθ + (7/2) ∫ cos(2θ) dθ =

    (dividing and multiplying the last integral by 2 that is the derivative of the argument 2θ)

    7(√7) ∫ cos²θ sinθ dθ + (7/2) ∫ dθ + (7/2)(1/2) ∫ cos(2θ) 2 dθ =

    7(√7) ∫ cos²θ sinθ dθ + (7/2)θ + (7/4) ∫ cos(2θ) d(2θ) =

    (applying the integration rule ∫ cos[f(x)] d[f(x)] = sin[f(x)] + C)

    7(√7) ∫ cos²θ sinθ dθ + (7/2)θ + (7/4)sin(2θ) =

    let's change signs in the remaining integrand:

    7(√7) ∫ (- cos²θ) (- sinθ) dθ + (7/2)θ + (7/4)sin(2θ) =

    (being - sinθ the derivative of cosθ)

    7(√7) ∫ (- cos²θ) d(cosθ) + (7/2)θ + (7/4)sin(2θ) =

    - 7(√7) ∫ cos²θ d(cosθ) + (7/2)θ + (7/4)sin(2θ) =

    (by the integration rule ∫ f(x)ⁿ d[f(x)] = [1/(n+1)] f(x)ⁿ⁺¹ + C)

    - 7(√7) [1/(2+1)] (cosθ)² ⁺ ¹ + (7/2)θ + (7/4)sin(2θ) + C =

    - 7(√7) (1/3)(cosθ)³ + (7/2)θ + (7/4)sin(2θ) + C =

    (applying the double-angle formula sin(2θ) = 2sinθ cosθ)

    - [(7√7)/3]cos³θ + (7/2)θ + (7/4)2sinθ cosθ + C =

    - [(7√7)/3]cos³θ + (7/2)θ + (7/2)sinθ cosθ + C

    let's now recall that x + 2 = (√7)sinθ; hence:

    sinθ = (x + 2)/√7

    θ = arcsin[(x + 2)/√7]

    cosθ = √(1 - sin²θ) = √{1 - [(x + 2)/√7]²} = √{1 - [(x + 2)²/7]} =

    √{1 - [(x² + 4x + 4)/7]} =

    √{[7 - (x² + 4x + 4)} /7} =

    √[(7 - x² - 4x - 4)} /7] =

    [√(3 - 4x - x²)] /√7

    then, substituting back:

    - [(7√7)/3]cos³θ + (7/2)θ + (7/2)sinθ cosθ + C = - [(7√7)/3] {[√(3 - 4x - x²)] /√7}³ +

    (7/2)arcsin[(x + 2)/√7] + (7/2) [(x + 2)/√7] {[√(3 - 4x - x²)] /√7} + C =

    - [(7√7)/3] {[√(3 - 4x - x²)³] /√7³} + (7/2)arcsin[(x + 2)/√7] + (7/2) [(x +

    2)/√7²] √(3 - 4x - x²) + C =

    - [(7√7)/3] {[√(3 - 4x - x²)³] /√(7² ∙ 7)} + (7/2)arcsin[(x + 2)/√7] + (7/2)[(x +

    2)/7] √(3 - 4x - x²) + C =

    - [(7√7)/3] {[√(3 - 4x - x²)³] /(7√7)} + (7/2)arcsin[(x + 2)/√7] + (1/2)(x + 2)√(3 -

    4x - x²) + C =

    ending with:

    - (1/3)√(3 - 4x - x²)³ + (7/2)arcsin[(x + 2)/√7] + (1/2)(x + 2)√(3 - 4x - x²) + C =

    I hope it's helpful

  • 5 years ago

    f(x)=(x+3)sqrt[7-(x+2)^2]

    =(x+2+1)sqrt[7-(x+2)]

    =(x+2)sqrt[7-(x+2)^2] + sqrt[7-(x+2)^2]

    integralf(x)dx = M+N where

    +M=integral(x+2)*[7-(x+2)^2]^(1/2)dx

    by substitute: u=(x+2)^2 -->du=2(x+2)dx

    -->M=(1/2)integral[(1-u)^(/1/2)]du

    =(1/4)*(1-u)^(-1/2)

    =1/[4sqrt(1-u)]

    =1/[4sqrt(1-(x+2)^2] +c

    + N=integral[sqrt(7- (x+2)^2]dx

    by substitute

    x+2=(sqrt7)sint

    --->dx=(sqrt7)cost.dt

    and t=arcsin[(x+2)/sqrt7]

    -->N=(sqrt7)integral[(cost)^2.dt

    =(sqrt7/2)integral[1+cos2t]dt

    =(sqrt7/2)[t +(1/2)sin2t]+ c

    =(sqrt7/2)[ t +sintcost] +c

    = ------------

    at last: integral=M+N

Still have questions? Get your answers by asking now.