Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Can you write those two expressions in the form of Csin(x+φ), where C>=0 and -π<=φ<=π?
1) 2sin(x)+3cos(x)
2) 7sin(x)+4cos(x)
1 Answer
- la consoleLv 75 years agoFavorite Answer
Do you know this identity?
sin(a + b) = sin(a).cos(b) + cos(a).sin(b) → suppose that: a = x and tha: b = φ
sin(x + φ) = sin(x).cos(φ) + cos(x).sin(φ) → you multiply by C
C.sin(x + φ) = C.sin(x).cos(φ) + C.cos(x).sin(φ) → let: C.cos(φ) = 2 ← equation (1)
C.sin(x + φ) = 2.sin(x) + C.cos(x).sin(φ) → let: C.sin(φ) = 3 ← equation (2)
C.sin(x + φ) = 2.sin(x) + 3.cos(x) ← this is your expression
You can get a system of 2 equations:
(1) : C.cos(φ) = 2
(2) : C.sin(φ) = 3
You calculate (2)/(1)
[C.sin(φ)]/[C.cos(φ)] = 3/2
sin(φ)/cos(φ) = 3/2
tan(φ) = 3/2
φ ≈ 56.31° → 0.9828 rd
You calculate (1)² + (2)²
[C.cos(φ)]² + [C.sin(φ)]² = 2² + 3²
C².cos²(φ) + C².sin²(φ) = 4 + 9
C².[cos²(φ) + sin²(φ)] = 13 → recall the famous formula: cos²(φ) + sin²(φ) = 1
C² = 13
C = √13
Recall your expression: 2.sin(x) + 3.cos(x) = C.sin(x + φ)
2.sin(x) + 3.cos(x) = √13 * sin(x + 0.9828)
You know now this identity
sin(a + b) = sin(a).cos(b) + cos(a).sin(b) → suppose that: a = x and tha: b = φ
sin(x + φ) = sin(x).cos(φ) + cos(x).sin(φ) → you multiply by C
C.sin(x + φ) = C.sin(x).cos(φ) + C.cos(x).sin(φ) → let: C.cos(φ) = 7 ← equation (1)
C.sin(x + φ) = 7.sin(x) + C.cos(x).sin(φ) → let: C.sin(φ) = 4 ← equation (2)
C.sin(x + φ) = 7.sin(x) + 4.cos(x) ← this is your expression
You can get a system of 2 equations:
(1) : C.cos(φ) = 7
(2) : C.sin(φ) = 4
You calculate (2)/(1)
[C.sin(φ)]/[C.cos(φ)] = 4/7
sin(φ)/cos(φ) = 4/7
tan(φ) = 4/7
φ ≈ 29.74° → 0.5191 rd
You calculate (1)² + (2)²
[C.cos(φ)]² + [C.sin(φ)]² = 4² + 7²
C².cos²(φ) + C².sin²(φ) = 16 + 49
C².[cos²(φ) + sin²(φ)] = 65 → reclla the famous formula: cos²(φ) + sin²(φ) = 1
C² = 65
C = √65
Recall your expression: 7.sin(x) + 4.cos(x) = C.sin(x + φ)
7.sin(x) + 4.cos(x) = √65 * sin(x + 0.5191)