Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

?
Lv 4
? asked in Science & MathematicsMathematics · 5 years ago

Can you write those two expressions in the form of Csin(x+φ), where C>=0 and -π<=φ<=π?

1) 2sin(x)+3cos(x)

2) 7sin(x)+4cos(x)

1 Answer

Relevance
  • 5 years ago
    Favorite Answer

    Do you know this identity?

    sin(a + b) = sin(a).cos(b) + cos(a).sin(b) → suppose that: a = x and tha: b = φ

    sin(x + φ) = sin(x).cos(φ) + cos(x).sin(φ) → you multiply by C

    C.sin(x + φ) = C.sin(x).cos(φ) + C.cos(x).sin(φ) → let: C.cos(φ) = 2 ← equation (1)

    C.sin(x + φ) = 2.sin(x) + C.cos(x).sin(φ) → let: C.sin(φ) = 3 ← equation (2)

    C.sin(x + φ) = 2.sin(x) + 3.cos(x) ← this is your expression

    You can get a system of 2 equations:

    (1) : C.cos(φ) = 2

    (2) : C.sin(φ) = 3

    You calculate (2)/(1)

    [C.sin(φ)]/[C.cos(φ)] = 3/2

    sin(φ)/cos(φ) = 3/2

    tan(φ) = 3/2

    φ ≈ 56.31° → 0.9828 rd

    You calculate (1)² + (2)²

    [C.cos(φ)]² + [C.sin(φ)]² = 2² + 3²

    C².cos²(φ) + C².sin²(φ) = 4 + 9

    C².[cos²(φ) + sin²(φ)] = 13 → recall the famous formula: cos²(φ) + sin²(φ) = 1

    C² = 13

    C = √13

    Recall your expression: 2.sin(x) + 3.cos(x) = C.sin(x + φ)

    2.sin(x) + 3.cos(x) = √13 * sin(x + 0.9828)

    You know now this identity

    sin(a + b) = sin(a).cos(b) + cos(a).sin(b) → suppose that: a = x and tha: b = φ

    sin(x + φ) = sin(x).cos(φ) + cos(x).sin(φ) → you multiply by C

    C.sin(x + φ) = C.sin(x).cos(φ) + C.cos(x).sin(φ) → let: C.cos(φ) = 7 ← equation (1)

    C.sin(x + φ) = 7.sin(x) + C.cos(x).sin(φ) → let: C.sin(φ) = 4 ← equation (2)

    C.sin(x + φ) = 7.sin(x) + 4.cos(x) ← this is your expression

    You can get a system of 2 equations:

    (1) : C.cos(φ) = 7

    (2) : C.sin(φ) = 4

    You calculate (2)/(1)

    [C.sin(φ)]/[C.cos(φ)] = 4/7

    sin(φ)/cos(φ) = 4/7

    tan(φ) = 4/7

    φ ≈ 29.74° → 0.5191 rd

    You calculate (1)² + (2)²

    [C.cos(φ)]² + [C.sin(φ)]² = 4² + 7²

    C².cos²(φ) + C².sin²(φ) = 16 + 49

    C².[cos²(φ) + sin²(φ)] = 65 → reclla the famous formula: cos²(φ) + sin²(φ) = 1

    C² = 65

    C = √65

    Recall your expression: 7.sin(x) + 4.cos(x) = C.sin(x + φ)

    7.sin(x) + 4.cos(x) = √65 * sin(x + 0.5191)

Still have questions? Get your answers by asking now.