Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

(ITA-79) Se a, b, c são as raízes da equação x³-rx+20=0 onde r é um número real, podemos afirmar que o valor de a³+b³+c³ é?

2 Answers

Rating
  • 4 years ago

    seu nome é sandra ne

  • 4 years ago

    x³ + 0x² - rx + 20 = 0 ---> Raízes: a, b, c

    x³-rx+20=(x-a)(x-b)(x-c)

    x³-rx+20=(x²-x(a+b)+ab)(x-c)

    x³-rx+20=x³-x²(a+b)+abx-cx²+x(ac+bc)-abc

    x³-rx+20=x³-x²(a+b+c)+x(ac+bc+ab)-abc

    Girard:

    a + b + c = 0 ----> I

    ab + ac + bc = - r ----> II

    abc = - 20 ----> III

    I*II ----> (a + b + c)*(ab + ac + bc) = 0*(-r) ----> a²b + a²c + ab² + cb² + ac² + bc² = - 3abc ----> IV

    I ----> (a + b + c)³ = 0³----> a³ + b³ + c² + 3*(a²b + a²c + ab² + cb² + ac² + bc²) + 6abc = 0 ----> V

    IV em V ----> a³ + b³ + c³ + 3*(- 3abc) + 6abc = 0 ----> a³ + b³ + c³ = 3abc ----> a³ + b³ + c³ = - 60

Still have questions? Get your answers by asking now.