Reduction formulae question?
The definite integral ∫(1-x^2)^n dx x=[0,1] is denoted by I(n)
Show that I(n)=(2n/(2n+1)).I(n-1)
Thanks very much!
The definite integral ∫(1-x^2)^n dx x=[0,1] is denoted by I(n)
Show that I(n)=(2n/(2n+1)).I(n-1)
Thanks very much!
Anonymous
Favorite Answer
Think of the integral as 1*(1 - x^2)^n and use integration by parts with u = (1 - x^2)^n and dv = 1.
This leads to the indefinite integral
x(1 - x^2)^n - INT -2nx^2*(1 - x^2)^(n-1) dx
Evaluating between 0 and 1 shows that the first term is zero leaving
I(n) = 2n*INT [0, 1] (x^2)*(1 - x^2)^(n - 1) dx
Now change the x^2 into 1 - (1 - x^2) and separate it into two integrals. You will find that one of them can be expressed as a multiple of I(n).
Can you finish from there?
Hemant
I(n) = ∫[0,1] ( 1 -x² )ⁿ dx ....... (1)
................................................................................................
Put x = sin u so that dx = cos u du.
Also, x in [0,1] means u in [0,π/2].
..................................................................................................
From (1), then,
I(n) = ∫[0,π/2] ( cos²ⁿ u )· cos u du = *[0,π/2] cos²ⁿ⁺¹ u du ... ... (2)
Taking U = cos²ⁿ u and dV = cos u du,
and integrating by parts,
I(n) = { [ (cos²ⁿ u)·sin u ] on [0,π/2] } - ∫[0,π/2] ( 2n. cos²ⁿֿ¹ u.(- sin u ))· sin u du
. . . = [ 0 - 0 ] + 2n · ∫ cos²ⁿֿ¹ u. sin² u du
. . . = 2n · ∫ cos²ⁿֿ¹ u. ( 1 - cos² u ) du
. . . .= 2n · ∫ ( cos²ⁿֿ¹ u - cos²ⁿ⁺¹ u ) du
. . . .= 2n·I(n-1) - 2n·I(n) ....................... from (2)
...................................................................................................
∴ I(n) = 2n·I(n-1) - 2n·I(n) ∴ (2n+1)·I(n) = 2n·I(n-1)
∴ I(n) = [ 2n / (2n+1) ]· I(n-1) ........................................ Q.E.D.
..........................................................................................................
Happy To Help !
............................................................................................................