Reduction formulae question?

The definite integral ∫(1-x^2)^n dx x=[0,1] is denoted by I(n)

Show that I(n)=(2n/(2n+1)).I(n-1)

Thanks very much!

Anonymous2010-05-21T04:43:59Z

Favorite Answer

Think of the integral as 1*(1 - x^2)^n and use integration by parts with u = (1 - x^2)^n and dv = 1.

This leads to the indefinite integral
x(1 - x^2)^n - INT -2nx^2*(1 - x^2)^(n-1) dx

Evaluating between 0 and 1 shows that the first term is zero leaving
I(n) = 2n*INT [0, 1] (x^2)*(1 - x^2)^(n - 1) dx

Now change the x^2 into 1 - (1 - x^2) and separate it into two integrals. You will find that one of them can be expressed as a multiple of I(n).

Can you finish from there?

Hemant2010-05-21T04:59:38Z

I(n) = ∫[0,1] ( 1 -x² )ⁿ dx ....... (1)
................................................................................................

Put x = sin u so that dx = cos u du.

Also, x in [0,1] means u in [0,π/2].
..................................................................................................

From (1), then,

I(n) = ∫[0,π/2] ( cos²ⁿ u )· cos u du = *[0,π/2] cos²ⁿ⁺¹ u du ... ... (2)

Taking U = cos²ⁿ u and dV = cos u du,

and integrating by parts,

I(n) = { [ (cos²ⁿ u)·sin u ] on [0,π/2] } - ∫[0,π/2] ( 2n. cos²ⁿֿ¹ u.(- sin u ))· sin u du

. . . = [ 0 - 0 ] + 2n · ∫ cos²ⁿֿ¹ u. sin² u du

. . . = 2n · ∫ cos²ⁿֿ¹ u. ( 1 - cos² u ) du

. . . .= 2n · ∫ ( cos²ⁿֿ¹ u - cos²ⁿ⁺¹ u ) du

. . . .= 2n·I(n-1) - 2n·I(n) ....................... from (2)
...................................................................................................

∴ I(n) = 2n·I(n-1) - 2n·I(n) ∴ (2n+1)·I(n) = 2n·I(n-1)

∴ I(n) = [ 2n / (2n+1) ]· I(n-1) ........................................ Q.E.D.
..........................................................................................................

Happy To Help !
............................................................................................................