Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Derive the general reduction formula?
derive a general reduction formula for integral e^(ax)cos(bx) dx.
2 Answers
- Anonymous1 decade agoFavorite Answer
A simple way to do this (other than using integration by parts) is to note that:
∫ e^(ax)*cos(bx) dx = Re{∫ e^(ax)*e^(bix) dx}
We have:
∫ e^(ax)*e^(bix) dx
=> ∫ e^(ax + bix) dx
= ∫ e^[x(a + bi)] dx
= e^[x(a + bi)]/(a + bi) + C.
Then:
∫ e^(ax)*cos(bx) dx
=> Re{e^[x(a + bi)]/(a + bi)} + C
= e^(ax)*Re{e^(bix)/(a + bi)} + C
= e^(ax)*Re{(a - bi)e^(bix)/(a^2 + b^2)} + C
= e^(ax)*[a*cos(bx) + b*sin(bx)]/(a^2 + b^2) + C.
I hope this helps!
- icemanLv 71 decade ago
∫ [e^(ax)cos(bx)] dx =
let I =∫e^(ax) cos(bx) dx
integrate by taking e^(ax) as a first function
I=1/b e^(ax) sin(bx) - a/b∫e^(ax) sin(bx) dx
now again integrate by taking e^(ax) as first function
I=1/b e^(ax) sin(bx) + a/b^2e^(ax) cos(bx) - a^2/b^2∫e^(ax)cos(bx) dx
I=1/b e^(ax)sin(bx) +a/b^2 e^(ax)cos(bx) -Ia^2/b^2
I= e^(ax)/(a^2+b^2) {a cos(bx) +b sin(bx)} +c
∎