Can you derive the sine sum/difference formula from the cosine formula?

I've constructed the proof for the cos difference formula
cos(A-B) = cosAcosB + sinAsinB
using the distance formula, but I'm not sure how to derive the sine sum/difference formula from this. I've thought about using a co-function identity, but that seems to have taken me nowhere.
Can someone help? Greatly appreciated.

Geronimo2011-11-19T02:38:21Z

Favorite Answer

cos(A – B) = cos(A) • cos(B) + sin(A) • sin(B)

    cos(x) = sin [ (π ⁄ 2) – x  ]  ... identity  1 (used later)

       sin(x) = cos [ (π ⁄ 2) – x  ]  ... identity  2 set: x = A – B
     sin(A – B) = cos [(π ⁄ 2) – (A – B)  ]
     sin(A – B) = cos [(π ⁄ 2) – A + B)  ]
     sin(A – B) = cos [ {  (π ⁄ 2) – A  } + B ]
     sin(A – B) = cos [ {  (π ⁄ 2) – A  } – (- B) ] ... equation 1

cos [ {  (π ⁄ 2) – A  } – (- B) ]  = cos[ (π ⁄ 2) – A ] • cos(- B) + sin[ (π ⁄ 2) – A ] • sin(- B)

  since:
      sin(- B) = - sin(B)  and  cos(- B) = cos(B)

cos [ {  (π ⁄ 2) – A  } – (- B) ]  = cos[ (π ⁄ 2) – A ] • cos(B) – sin[ (π ⁄ 2) – A ] • sin(B)

      ... and using identities 1 and 2 (earlier) ...

cos [ {  (π ⁄ 2) – A  } – (- B) ]  = sin(A) • cos(B) – cos(A) • sin(B)

      ... and because of equation 1 ...

sin(A – B) = sin(A) • cos(B) – cos(A) • sin(B)