Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Is HDMI/DVI really better than component cable for HDTV?
8 Answers
- 1 decade agoFavorite Answer
As DVI and HDMI connections become more and more widely used, we are often asked: which is better, DVI (or HDMI) or component video? The answer, as it happens, is not cut-and-dried.
First, to clear away one element that can be confusing: DVI and HDMI are exactly the same as one another, image-quality-wise. The principal differences are that HDMI carries audio as well as video, and uses a different type of connector, but both use the same encoding scheme, and that's why a DVI source can be connected to an HDMI monitor, or vice versa, with a DVI/HDMI cable, with no intervening converter box.
The upshot of this article--in case you're not inclined to read all the details--is that it's very hard to predict whether a digital DVI or HDMI connection will produce a better or worse image than an analog component video connection. There will often be significant differences between the digital and the analog signals, but those differences are not inherent in the connection type and instead depend upon the characteristics of the source device (e.g., your DVD player) and the display device (e.g., your TV set). Why that is, however, requires a bit more discussion.
What are DVI, HDMI and Component Video?
DVI/HDMI and Component Video are all video standards which support a variety of resolutions, but which deliver the signal from the source to the display in very different ways. The principal important difference is that DVI/HDMI deliver the signal in a digital format, much the same way that a file is delivered from one computer to another along a network, while Component Video is an analog format, delivering the signal not as a bitstream, but as a set of continuously varying voltages representing (albeit indirectly, as we'll get to in a moment) the red, green and blue components of the signal.
Both DVI/HDMI and Component Video deliver signals as discrete red, green, and blue color components, together with sync information which allows the display to determine when a new line, or a new frame, begins. The DVI/HDMI standard delivers these along three data channels in a format called T.M.D.S., which stands for "Transmission Minimized Differential Signaling." Big words aside, the T.M.D.S. format basically involves a blue channel to which horizontal and vertical sync are added, and separate green and red channels.
Component Video is delivered, similarly, with the color information split up three ways. However, component video uses a "color-difference" type signal, which consists of Luminance (the "Y", or "green," channel, representing the total brightness of the image), Red Minus Luminance (the "Pr," or "Red," channel), and Blue Minus Luminance (the "Pb," or "Blue," channel). The sync pulses for both horizontal and vertical are delivered on the Y channel. The display calculates the values of red, green and blue from the Y, Pb, and Pr signals.
Both signal types, then, are fundamentally quite similar; they break up the image in similar ways, and deliver the same type of information to the display, albeit in different forms. How they differ, as we'll see, will depend to a great extent upon the particular characteristics of the source and display devices, and can depend upon cabling as well.
Isn't Digital Just Better?
It is often supposed by writers on this subject that "digital is better." Digital signal transfer, it is assumed, is error-free, while analog signals are always subject to some amount of degradation and information loss. There is an element of truth to this argument, but it tends to fly in the face of real-world considerations. First, there is no reason why any perceptible degradation of an analog component video signal should occur even over rather substantial distances; the maximum runs in home theater installations do not present a challenge for analog cabling built to professional standards. Second, it is a flawed assumption to suppose that digital signal handling is always error-free. DVI and HDMI signals aren't subject to error correction; once information is lost, it's lost for good. That is not a consideration with well-made cable over short distances, but can easily become a factor at distance.
So What Does Determine Image Quality?
Video doesn't just translate directly from source material to displays, for a variety of reasons. Very few displays operate at the native resolutions of common source material, so when you're viewing material in 480p, 720p, or 1080i, there is, of necessity, some scaling going on. Meanwhile, the signals representing colors have to be accurately rendered, which is dependent on black level and "delta," the relationship between signal level and actual as-rendered color level. Original signal formats don't correspond well to display hardware; for example, DVD recordings have 480 lines, but non-square pixels. What all of this means is that there is signal processing to go on along the signal chain.
The argument often made for the DVI or HDMI signal formats is the "pure digital" argument--that by taking a digital recording, such as a DVD or a digital satellite signal, and rendering it straight into digital form as a DVI or HDMI signal, and then delivering that digital signal straight to the display, there is a sort of a perfect no-loss-and-no-alteration-of-information signal chain. If the display itself is a native digital display (e.g. an LCD or Plasma display), the argument goes, the signal never has to undergo digital-to-analog conversion and therefore is less altered along the way.
That might be true, were it not for the fact that digital signals are encoded in different ways and have to be converted, and that these signals have to be scaled and processed to be displayed. Consequently, there are always conversions going on, and these conversions aren't always easy going. "Digital to digital" conversion is no more a guarantee of signal quality than "digital to analog," and in practice may be substantially worse. Whether it's better or worse will depend upon the circuitry involved--and that is something which isn't usually practical to figure out. As a general rule, with consumer equipment, one simply doesn't know how signals are processed, and one doesn't know how that processing varies by input. Analog and digital inputs must either be scaled through separate circuits, or one must be converted to the other to use the same scaler. How is that done? In general, you won't find an answer to that anywhere in your instruction manual, and even if you did, it'd be hard to judge which is the better scaler without viewing the actual video output. It's fair to say, in general, that even in very high-end consumer gear, the quality of circuits for signal processing and scaling is quite variable.
Additionally, it's not uncommon to find that the display characteristics of different inputs have been set up differently. Black level, for example, may vary considerably from the digital to the analog inputs, and depending on how sophisticated your setup options on your display are, that may not be an easy thing to recalibrate.
The Role of Cable and Connection Quality
Cable quality, in general, should not be a significant factor in the DVI/HDMI versus Component Video comparison, as long as the cables in question are of high quality. There are, however, ways in which cable quality issues can come into play.
Analog component video is an extremely robust signal type; we have had our customers run analog component, without any need for boosters, relays or other special equipment, up to 200 feet without any signal quality issues at all. However, at long lengths, cable quality can be a consideration--in particular, impedance needs to be strictly controlled to a tight tolerance (ideally, 75 +/- 1.5 ohms) to prevent problems with signal reflection which can cause ghosting or ringing.
DVI and HDMI, unfortunately, are not so robust. The problem here is the same as the virtue of analog component: tight control over impedance. When the professional video industry went to digital signals, it settled upon a standard--SDI, serial digital video--which was designed to be run in coaxial cables, where impedance can be controlled very tightly, and consequently, uncompressed, full-blown HD signals can be run hundreds of feet with no loss of information in SDI. For reasons known only to the designers of the DVI and HDMI standards, this very sound design principle was ignored; instead of coaxial cable, the DVI and HDMI signals are run balanced, through twisted-pair cable. The best twisted pair cables control impedance to about +/- 10%. When a digital signal is run through a cable, the edges of the bits (represented by sudden transitions in voltage) round off, and the rounding increases dramatically with distance. Meanwhile, poor control over impedance results in signal reflections--portions of the signal bounce off of the display end of the line, propagate back down the cable, and return, interfering with later information in the same bitstream. At some point, the data become unrecoverable, and with no error correction available, there's no way to restore the lost information.
DVI and HDMI connections, for this reason, are subject to the "digital cliff" phenomenon. Up to some length, a DVI or HDMI cable will perform just fine; the rounding and reflections will not compromise the ability of the display device to reconstruct the original bitstream, and no information will be lost. As we make the cable longer and longer, the difficulty of reconstructing the bitstream increases. At some point, unrecoverable bit errors start to occur; these are colloquially described in the home theater community as "sparklies," because the bit errors manifest themselves as pixel dropouts which make the image sparkle. If we make the cable just a bit longer, so much information is lost that the display becomes unable to reconstitute enough information to even render an image; the bitstream has fallen off the digital cliff, so called because of the abruptness of the failure. A cable design that works perfectly at 20 feet may get "sparkly" at 25, and stop working entirely at 30.
In practice, it's very hard to say when a DVI or HDMI signal will fail. We have found well-made DVI cables to be quite reliable up to 50 feet, but HDMI cable, with its smaller profile, is a bit more of a puzzle. Because the ability to reconstitute the bitstream varies depending on the quality of the circuitry in the source and display devices, it's not uncommon for a cable to work fine at 30, 40, or 50 feet on one source/display combination, and not work at all on another.
The Upshot: It Depends
So, which is better, DVI or component? HDMI or component? The answer--unsatisfying, perhaps, but true--is that it depends. It depends upon your source and display devices, and there's no good way, in principle, to say in advance whether the digital or the analog connection will render a better picture. You may even find, say, that your DVD player looks better through its DVI or HDMI output, while your satellite or cable box looks better through its component output, on the same display. In this case, there's no real substitute for simply plugging it in and giving it a try both ways.
Source(s): By Blue Jeans Cable - 1 decade ago
I see a number of folks answering that "just because it's digital doesn't mean it's better."
This, on the face of it, is true. But you have to look at the entire path from the source to make sense of it.
In general, conversions from analog to digital are what you want to avoid.
Just about everything a consumer touches nowadays is a digital source. Certainly DTV is digital. DBS, like DirecTV is all digital, DVDs are all digital, CDs, MP3s, satellite radio... all digital. Analog NTSC TV and AM/FM radio are just about the only things left.
Next, consider your display device. Most of them re-raster the incoming video. That is, their displays raster the screen at a rate different than the rate of the incoming video. This is generally not the case with CRTs, but LCD, DLP and plasma displays generally do not run synchronously with the source. This means that they take the incoming video and store it in a frame buffer, which is what gets displayed on the screen. That frame buffer is universally a digital thing. The last digital-to-analog conversion happens when the RGB values stored in the frame buffer (to be perfectly accurate, the frame buffer is not required to store RGB. It may store HSV or some other representation of the pixel's color and brightness, but you get the idea) get converted into the amount of Red Green and Blue light that come out of the pixel in question and travels to your eye.
So if you have a DTV receiver and hook it up to a DLP set with component cables, the DTV receiver converts the digital picture to analog, transmits it on the component cables to the TV. The TV then converts the analog component video back to digital, for the purpose of manipulating it and storing it in the frame buffer. Then the rastering system converts it into analog as it shines out of the front of the screen.
Thats two extra conversions that are unnecessary and can be avoided by using HDMI (or DVI, for older sets) cables instead.
- Mr. Peachy®Lv 71 decade ago
HDMI definitely is... it's pure digital. Component is analog and quite limited. DVI... well now, you've opened up a can of worms with that one. There's DVI-A, DVI-I, and DVI-D plus single link and dual link variations. DVI-D would be the best of the bunch... and it's far better than component. DVI-A is about the same as component. However, it doesn't support audio the way HDMI does. I would stay away from DVI simply because there are too many variations and incompatibilities within one so-called standard. There's a wonderful explanation of it here: http://www.calrad.com/
Go to the catalog 60 (.pdf) and go to pages 94 and 95. Here you can learn lots about DVI, HDMI, component, and RGB.
'nuff said?
- Anonymous1 decade ago
This word "Digital" is soooo over rated. I am in the business and to the eye the difference is slim if not the same. Beside, most equipment that has "Digital Audio" out, you would hook into the audio receiver anyhow. As far as video switching through and audio amp, that loses a bit of quality and cost will double on cables. Component rocks as good as HDMI/DVI
- How do you think about the answers? You can sign in to vote the answer.
- Anonymous1 decade ago
Yes. The best is HDMI because it carries audio and video, with DVI you need separate audio cables. The main difference that I have personally noticed between DVI/HDMI vs. component is that the color seems to look more natural. As far as a difference between DVI and HDMI I haven't noticed anything aside from the audio.
- 1 decade ago
HDMI does not rely on the converter inside the unit (such as satalite receivers). It is a pure HD signal and will give you superior quality video and yes it carries digital audio signal instead of needing seperate cables.
Source(s): Home theater installer. - Anonymous1 decade ago
Actually most people in the business prefer component, but the studios and manufacturers are pushing HDMI for the copy protection. Just because something is "Digital" doesn't always mean that it is better.....
- Michael LLv 51 decade ago
the hdmi connection, if included on your set, is the best connection available on the market today, it offers a single uncompressed signal for digital audio and high definition video.