Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
what is hummidity & how does it effect the rate of transpiration?
2 Answers
- kromLv 51 decade agoFavorite Answer
High humidity restricts the transpiration, because very humid air is almost saturated with water vapour and cannot absorb much more.
If very humid conditions and much sun shine were to occur at the same time, the plants would get very hot due to low transpiration and lack of leaf cooling.
- 1 decade ago
The term Humidity is usually taken in daily language to refer to relative humidity. Relative humidity is defined as the amount of water vapor in a sample of air compared to the maximum amount of water vapor the air can hold at any specific temperature. Humidity may also be expressed as Absolute humidity and specific humidity. Relative humidity is an important metric used in forecasting weather. Humidity indicates the likelihood of precipitation, dew, or fog. High humidity makes people feel hotter outside in the summer because it reduces the effectiveness of sweating to cool the body by preventing the evaporation of perspiration from the skin. This effect is calculated in a heat index table. Warm water vapor has more thermal energy than cool water vapor and therefore more of it evaporates into warm air than into cold air.
Absolute humidity
Absolute humidity is the quantity of water in a particular volume of air. The most common units are grams per cubic meter, although any mass unit and any volume unit could be used. Pounds per cubic foot is common in the U.S., and occasionally even other units mixing the English and metric systems are used.
If all the water in one cubic meter of air were condensed into a container, the container could be weighed to determine absolute humidity. The amount of vapor in that cube of air is the absolute humidity of that cubic meter of air. More technically: the mass of water vapor mw, per cubic meter of air, Va .
However, absolute humidity changes as air pressure changes. This is very inconvenient for chemical engineering calculations, e.g. for dryers, where temperature can vary considerably. As a result, absolute humidity is generally defined in chemical engineering as mass of water vapor per unit mass of dry air, also known as the mass mixing ratio (see below), which is much more rigorous for heat and mass balance calculations. Mass of water per unit volume as in the equation above would then be defined as volumetric humidity. Because of the potential confusion, British Standard BS 1339 (revised 2002) suggests avoiding the term "absolute humidity." Units should always be carefully checked. Most humidity charts are given in g/kg or kg/kg, but any mass units may be used.
Mixing ratio / Humidity ratio
Mixing or Humidity ratio is expressed as a ratio of kilograms of water vapor, mw, per kilogram of dry air, md, at a given pressure. The colloquial term Moisture Content is also used instead of Mixing/Humidity Ratio. Humidity Ratio is a standard axis on psychrometric charts, and is a useful parameter in psychrometrics calculations because it does not change with temperature except when the air cools below dewpoint
That ratio can be given as:
Partial pressure of water vapor and air can also be used to express the ratio.
Relative humidity
Relative humidity is defined as the ratio of the partial pressure of water vapor in a gaseous mixture of air and water vapor to the saturated vapor pressure of water at a given temperature. Relative humidity is expressed as a percentage and is calculated in the following manner:
where
is the partial pressure of water vapor in the gas mixture;
is the saturation vapor pressure of water at the temperature of the gas mixture; and
is the relative humidity of the gas mixture being considered.
Specific humidity
Specific humidity is the ratio of water vapor to 'dry air plus water vapor' in a particular volume. Specific humidity ratio is expressed as a ratio of kilograms of water vapor, mw, per kilogram of mixture, mt .
That ratio can be showed as:
Specific humidity is related to mixing ratio (and vice versa) by:
Measuring and regulating humidity
A hygrometer is a device used for measuring the humidity of the air
There are various devices used to measure and regulate humidity. A device used to measure humidity is called a psychrometer or hygrometer. A humidistat is used to regulate the humidity of a building with a de-humidifier. These can be analogous to a thermometer and thermostat for temperature control.
Humidity is also measured on a global scale using remotely placed satellites. These satellites are able to detect the concentration of water in the troposphere at altitudes between 4 and 12 kilometers. Satellites that can measure water vapor have sensors that are sensitive to infrared radiation. Water vapor specifically absorbs and re-radiates radiation in this spectral band. Satellite water vapor imagery plays an important role in monitoring climate conditions (like the formation of thunderstorms) and in the development of future weather forecasts.
Why humidity can be less than 100% when it's raining
Humidity is a measure of the amount of water vapor in the air, not the total amount of vapor and liquid. For clouds to form, and rain to start, the air does have to reach 100% relative humidity, but only where the clouds are forming or where the rain is coming from. This normally happens when the air rises and cools. Typically, rain falls into air with less than saturated humidity. Some water from the rain may evaporate into the air as it falls, increasing the humidity, but rarely enough to bring the humidity to 100%. Indeed, rain falling through warm, humid air may be cold enough to lower the air temperature to the dew point, thus condensing water vapor and lowering the absolute humidity.
Humidity and air density
Humid air is less dense than dry air because a molecule of water weighs less than molecules of nitrogen and oxygen. Isaac Newton discovered this phenomenon and wrote about it in his book Opticks.[1] Avogadro's ideal gas law states that a fixed volume of gas at a given temperature and pressure always contains the same number of molecules regardless of what type of gas it is. Consider a cubic meter of dry air. About 78% of the molecules are nitrogen (N2), with a molecular weight of 28. Another 21% of the molecules are oxygen (O2), with a molecular weight of 32. The final 1% is a mixture of other gases. Combining these weights in the correct proportions gives an average molecular weight for air of about 29. If molecules of water vapor (H2O), of molecular weight 18, replace the diatomic nitrogen or oxygen molecules in this fixed volume then the weight of the air decreases, and hence the density decreases. Thus, humid air has a lower density than dry air at a specified temperature and pressure.
Dew point and frost point
Associated with relative humidity is dew point (If the dew point is below freezing, it is referred to as the frost point). Dew point is the temperature at which water vapor saturates from an air mass into liquid or solid usually forming rain, snow, frost, or dew. Dew point normally occurs when a mass of air has a relative humidity of 100%. This happens in the atmosphere as a result of cooling through a number of different processes.
Most humid places on earth
The most humid cities on earth are generally located closer to the equator, near coastal regions. Cities in South and Southeast Asia seem to be among the most humid. Kolkata, India; Kerala, India; and Bangkok, Thailand experience extreme humidity during their rainy seasons combined with warmth giving the feel of a lukewarm Sauna.[2] Darwin, Australia experiences an extremely humid wet season from December to April. Kuala Lumpur and Singapore have very high humidity all year round because of their proximity to water bodies and the Equator and overcast weather; despite sunshine, perfectly clear days are rare in these locations and it is often misty. In cooler places such as Northern Tasmania, Australia high humidity is experienced all year due to the ocean between mainland Australia and Tasmania. In the summer the hot dry air is absorbed by this ocean and the temperature rarely climbs above 30 degrees Celsius.
In the United States the most humid cities, strictly in terms of relative humidity, are Forks and Olympia, Washington.[3] This fact may come as a surprise to many, as the climate in this region rarely exhibits the discomfort usually associated with high humidity. Dew points are typically much lower on the West Coast than on the East. Because high dew points play a more significant role than relative humidity in the discomfort created during humid days, the air in these western cities usually does not feel "humid."
The highest dew points are found in coastal Florida and Texas. When comparing Key West and Houston, two of the most humid cities from those states, coastal Florida seems to have the higher dew points on average. But, as noted by Jack Williams of USA Today,[4] Houston lacks the coastal breeze present in Key West.
Effects on human body
The human body sheds heat by a combination of evaporation of perspiration, heat convection to the surrounding air, and thermal radiation. Under conditions of high humidity, the evaporation of sweat from the skin is decreased and the body's efforts to maintain an acceptable body temperature may be significantly impaired. Also, if the atmosphere is as warm as or warmer than the skin during times of high humidity, blood brought to the body surface cannot shed heat by conduction to the air, and a condition called hyperpyrexia results. With so much blood going to the external surface of the body, relatively less goes to the active muscles, the brain, and other internal organs. Physical strength declines and fatigue occurs sooner than it would otherwise. Alertness and mental capacity also may be affected. This resulting condition is called heat stroke or hyperthermia.
[edit] Effects on electronics
Many electronic devices have humidity specifications, for example, 5 to 95%. At the top end of the range, moisture may increase the conductivity of permeable insulators leading to malfunction. Too low humidity may make materials brittle. A particular danger to electronic items, regardless of the stated operating humidity range, is condensation. When an electronic item is moved from a cold place (eg garage, car, shed) to a warm humid place (house), condensation may coat circuit boards and other insulators, leading to Short Circuit inside the equipment. Such short circuits may cause substantial permanent damage if the equipment is powered on before the condensation has evaporated. A similar condensation effect can often be observed when a person wearing glasses comes in from the cold. It is advisable to allow electronic equipment to acclimatise for several hours, after being brought in from the cold, before powering on. The inverse is also true. In places where the humity is very low,the chances of creating static electricity is high. Electronics, and more specific TTL technology, cannot handle voltages that exceed the supply voltage by a small margin before it will blow and cause it to malfunction. Therefore humidity is an important measure in the control of data centers.
Recommendations for comfort
Humans control their body temperature by sweating and shivering. The United States Environmental Protection Agency cites the ASHRAE Standard 55-1992 Thermal Environmental Conditions for Human Occupancy, which recommends keeping relative humidity between 30% and 60%, with below 50% preferred to control dust mites. At high humidity sweating is less effective so we feel hotter; thus the desire to remove humidity from air with air conditioning in the summer. In the winter, heating cold outdoor air can decrease indoor relative humidity levels to below 30%, leading to discomfort such as dry skin and excessive thirst.
Source(s): www.wikipedia.org