Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Biology help needed!?
A. List different types of isomers and describe their structures briefly.
Isomers: structural, geometric, and enantiomers.
2 Answers
- maggikateLv 51 decade agoFavorite Answer
There are two main forms of isomerism: structural isomerism and stereoisomerism (spatial isomerism).
In structural isomers, the atoms and functional groups are joined together in different ways, as in the example of propyl alcohol above. This group includes chain isomerism whereby hydrocarbon chains have variable amounts of branching; position isomerism which deals with the position of a functional group on a chain; and functional group isomerism in which one functional group is split up into different ones.
In stereoisomers the bond structure is the same, but the geometrical positioning of atoms and functional groups in space differs. This class includes enantiomers where different isomers are non-superimposable mirror-images of each other, and diastereomers when they are not. Diastereomerism is again subdivided into conformational isomerism (conformers) when isomers can interconvert by chemical bond rotations and cis-trans isomerism (E-Z isomerism) when this is not possible. Note that although conformers can be referred to as having a diastereomeric relationship, the isomers over all are not diastereomers, since bonds in conformers can be rotated to make them mirror images.
In skeletal isomers the main carbon chain is different between the two isomers. This type of isomerism is most identifiable in secondary and tertiary alcohol isomers.
Tautomers are structural isomers of the same chemical substance that spontaneously interconvert with each other, even when pure. They have different chemical properties, and consequently, distinct reactions characteristic to each form are observed. If the interconversion reaction is fast enough, tautomers cannot be isolated from each other. An example is when they differ by the position of a proton, such as in keto/enol tautomerism, where the proton is alternately on the carbon or oxygen.
In food chemistry, medicinal chemistry and biochemistry, cis-trans isomerism is always considered. In medicinal chemistry and biochemistry, enantiomers are of particular interest since most changes in these types of isomers are now known to be meaningful in living organisms. Pharmaceutical and academic researchers have found chromatographical methods to reliably separate these from each other. On an industrial scale, however, these methods are rather costly and are mostly used to filter out the potentially harmful or biologically inactive enantiomer.
While structural isomers typically have different chemical properties, stereoisomers behave identically in most chemical reactions, except in their reaction with other stereoisomers. Enzymes however can distinguish between different enantiomers of a compound, and organisms often prefer one isomer over the other. Some stereoisomers also differ in the way they rotate polarized light.
Other types of isomerism exist outside this scope. Topological isomers called topoisomers are generally large molecules that wind about and form different shaped knots or loops. Molecules with topoisomers include catenanes and DNA. Topoisomerase enzymes can knot DNA and thus change its topology. There are also isotopomers or isotopic isomers that have the same numbers of each type of isotopic substitution but in chemically different positions. In nuclear physics, nuclear isomers are excited states of atomic nuclei. Spin isomers have differing distributions of spin among their constituent atoms.
Source(s): http://en.wikipedia.org/wiki/Isomers - ?Lv 44 years ago
there is not any specific grade for you to take any AP class. In my college, maximum juniors take AP Bio yet you may take it on your senior 12 months. that is not too undesirable. the different technology AP's are Chem, Physics B, Physics C, and Environmental technology. i could in my opinion propose you're taking Bio because of the fact i did not locate it that complicated once I took it in my junior 12 months of highschool, yet nonetheless it relies upon on you. Bio has a hell lot of memorization it is needed, on a similar time as Chem and Physics have extra math integrated into its curriculum to cut back the quantity of memorization. So it truly relies upon on what you're good at. good success =)