Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Please integrate the following: -4(sinmx)^3dx?
Please integrate -4[sin(mx)]^3dx
thanks :)
2 Answers
- HemantLv 71 decade agoFavorite Answer
I = ∫ ( - 4 sin³ mx ) dx ...... (1)
...............................................................................
We have
sin ( 3 mx ) = 3 sin mx - 4 sin³ mx
so that
- 4 sin³ mx = sin (3mx) - 3 sin mx.
.........................................................................................................
Hence, from (1),
I = ∫ [ sin (3mx) - 3 sin (mx) ] dx
..= [ - ( cos 3mx ) / (3m) ] - 3 [ - ( cos mx ) / (m) ] + C
..= ( - 1/ 3m) cos 3mx + ( 3/m ) cos mx + C ...................... Ans.
..........................................................................................
Happy To Help !
..................................................................................
- Anonymous1 decade ago
⫠-4(sin mx)³ dx
= -4 ⫠(sin mx)³ dx
= -4 ⫠sin mx sin² mx dx
= -4 ⫠sin mx (1 - cos² mx) dx
= -4 ⫠(sin mx - sin mx cos² mx) dx
= -4 ⫠sin mx dx + 4 ⫠sin mx cos² mx dx
= 4cos (mx)/m + 4 ⫠sin mx cos² mx dx + C
Let u = cos mx
du = -msin mx
= 4cos (mx)/m - 4/m ⫠u²du + C
= 4cos (mx)/m - 4/m (u³/3) + C
= 4cos (mx)/m - 4/m (cos³ mx/3) + C
= 4cos (mx)/m - 4cos³ (mx)/(3m) + C
= 4cos (mx)/m [1 - cos² (mx)/3] + C