Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
hi can u help me write out the formula for the equation below using the Newton-Raphson method?
cosx=1.6x^1.3 when x≥0,in radians
Thanks!!
2 Answers
- cidyahLv 71 decade agoFavorite Answer
f(x)= cos x - 1.6 x^3
We want to solve f(x)=0 for x.
f'(x)=-sin x -1.6 (3x^2)
f'(x) = -sin x -4.8 x^2
Start the process with an initial approximation x0=1 (you may choose any reasonable value)
First approximation:
x1 = x0- f(x0) / f'(x0)
x1 = 1 - f(1) / f'(1)
f(1)= cos(1)-1.6(1)^3 =-1.0596976941
f'(1)=-sin(1)-4.8(1)^2 =-3.958529015
x1= 1 - [-1.0596976941] /[-3.958529015]
x1 = 0.81215933
Repeat the process with x1
x2= x1 - f(x1) / f'(x1)
and continue until the difference between two successive approximations is less than, say .00001
x = 1.00000000 -1.0596976941
x = 0.81215933 -0.1691912247
x = 0.76868631 -0.0078959742
x = 0.76645039 -0.0000202264
x = 0.76644463 -1e-10.0000000000
The process converges to 0.76644463
x=0.76644463
x= 0.76644463
- Davis PLv 71 decade ago
f(x) = cos x - 1.6 x^1.3
f '(x) = - sin x -1.6*1.3 x^.3 = - sin x - 2.08 x^.3
xn+1 = xn - f(xn) / f '(xn)
xn __________________ f(xn) ______ f '(xn)
1 __________________ -1.05970 ___ -2.92147
0.637272559049036 ___ -0.08700 ___ -2.41203
0.601202693915652 ___ -0.00109 ___ -2.35117
0.600738500498314 ___ -0/2 _______ -2.35038
0.600738421844613 ___ +0 ________ -2.35038
0.600738421844611 ___ 0 _________ -2.35038
0.600738421844611 ___ 0 _________ -2.35038
0.600738421844611 ___ 0 _________ -2.35038
0.600738421844611 ___ 0 _________ -2.35038