Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
how to solve integrals of trig functions?
please help me solve the integral, it involves substitution: ∫ csc^2 4x cot4x dx, let u = cot4x
reads as: integral of cosecant 4x squared (multiplied by) cotangent 4x dx, let u equal cotangent 4x
7 Answers
- Ed ILv 71 decade agoFavorite Answer
∫ csc^2 4x cot 4x dx
Let u = cot 4x
then du = - csc^2 4x • 4 dx
so (-1/4) du = csc^2 x dx
(-1/4) ∫ u du = (-1/8) u^2 + C = (-1/8) cot^2 4x + C
- mohanrao dLv 71 decade ago
∫ csc^2( 4x) cot (4x) dx
let cot(4x) = u
= - 4 csc^2(4x) dx = du
csc^2(4x) dx = - du/4
now the integral becomes
- 1/4 ∫ u du
= -(1/8 ) u^2 + C
back substitute u = cot(4x)
= - (1/8) cot^2(4x) + C
- ComoLv 71 decade ago
I = ∫ csc ² (4x) cot (4x) dx
Let u = cot (4x)
du/dx = - 4 csc ² (4x)
- du/4 = csc ² (4x) dx
I = (-1/4) ∫ u du
I = (-1/8) u ² + C
I = (-1/8) cot ² (4x) + C
- ?Lv 41 decade ago
∫cosec² 4x cot² 4x dx
let u = cot 4x
so, du = - 4 cosec² 4x dx
∫cosec² 4x cot² 4x dx
=∫ (-u/4) du
= (-1/4) (u²/2) + c
= - [(cot² 4x)/8] +c
- How do you think about the answers? You can sign in to vote the answer.
- ?Lv 71 decade ago
∫ csc²(4x) cot(4x) dx
Let u = cot(4x) then du = -4csc²(4x) dx
(-1/4) ∫ cot(4x) [-4csc²(4x) dx]
(-1/4) ∫ u du
(-1/4) u²/2
(-1/4) cot²(4x) / 2
(-1/8) cot²(4x) + C
- ?Lv 45 years ago
a million. ?(t² - sint) dt = ?t²dt - ?sintdt = t³/3 + value + C 2. ?sinxdx/(a million - sin²x) = ?d(cosx)/cos²x = -a million/cosx + C 3. ? dx/?(x) = ?x^(-a million/4)dx = (4/3)x^(3/4) + C = (4/3)?(x³) + C