Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
How do you find this definite integral?
∫ x² √ (8x+5)
From 0 to 1.
Do you use U substitution? I tried it but I can't seem to get it. Please explain step by step.
1 Answer
- germanoLv 71 decade agoFavorite Answer
Hello,
let's find the antiderivative, first;
∫ x² √(8x + 5) dx =
let:
√(8x + 5) = u
8x + 5 = u²
8x = u² - 5
x = (1/8)(u² - 5)
dx = (1/8)2u du
dx = (1/4)u du
then, substituting:
∫ x² √(8x + 5) dx = ∫ [(1/8)(u² - 5)]² u (1/4)u du =
(expanding)
∫ (1/64)(u^4 - 10u² + 25) (1/4)u² du =
∫ (1/256)(u^6 - 10u^4 + 25u²) du =
∫ [(1/256)u^6 - (5/128)u^4 + (25/256)u²] du =
let's split this pulling constants out:
(1/256) ∫ u^6 du - (5/128) ∫ u^4 du + (25/256) ∫ u² du =
(1/256) [1/(6+1)] u^(6+1) - (5/128) [1/(4+1)] u^(4+1) + (25/256) [1/(2+1)] u^(2+1) + C =
(1/256)(1/7)u^7 - (5/128)(1/5)u^5 + (25/256)(1/3)u³ + C =
(1/1792)u^7 - (1/128)u^5 + (25/768)u³ + C
let's substitute back √(8x + 5) for u, yielding:
(1/1792)√(8x + 5)^7 - (1/128)√(8x + 5)^5 + (25/768)√(8x + 5)³ + C
that is the antiderivative;
finally, having the antiderivative, let's plug in the bounds:
1
∫ x² √(8x + 5) dx = {(1/1792)√[8(1) + 5]^7 - (1/128)√[8(1) + 5]^5 + (25/768)√[8(1) +
0
5]^7 - (1/128)√[8(0) + 5]^5 + (25/768)√[8(0) + 5]³} =
(1/1792)√(8 + 5)^7 - (1/128)√(8 + 5)^5 + (25/768)√(8 + 5)³ - (1/1792)√5^7 +
(1/128)√5^5 - (25/768)√5³ =
(1/1792)√13^7 - (1/128)√13^5 + (25/768)√13³ - (1/1792)(5³)√5 + (1/128)(5²)√5 -
(25/768)5√5 =
(1/1792)(13³)√13 - (1/128)(13²)√13 + (25/768)13√13 - (125/1792)√5 + (25/128)√5 -
(125/768)√5 =
(2197/1792)√13 - (169/128)√13 + (325/768)√13 - (125/1792)√5 + (25/128)√5 -
(125/768)√5 =
{[(3)2197 - (42)169 + (7)325]/5376}√13 + {[- (3)125 + (42)25 - (7)125]/5376}√5 =
[(6591 - 7098 + 2275)/5376]√13 + [(- 375 + 1050 - 875)/5376]√5 =
(1768/5376)√13 - (200/5376)√5 =
(221/672)√13 - (25/672)√5 =
(1/672)(221√13 - 25√5)
the answer is: (1/672)(221√13 - 25√5) (≈1.10257)
I hope it helps..