Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

¿Encuentra la integral indefinida haciendo la sustitución trigonométrica x=9senΘ?

∫((√(81-x²)/x)dx

2 Answers

Rating
  • 10 years ago
    Favorite Answer

    Te desarrolle todo el ejercicio, espero que te sirva, lo subí a una página mía para que pudieras visualizarlo porque son muchas formulas.

    Saludos

  • Anonymous
    10 years ago

    x = 9senΘ ---> dx = 9cosΘdΘ

    x² = 81sen²Θ

    ∫(√(81-x²)/x)dx

    ∫(√(81-81sen²Θ)/(9senΘ))dx

    ∫(√(81(1-sen²Θ))/(9senΘ))dx

    ∫(√(81cos²Θ)/(9senΘ))dx

    ∫((9cosΘ)/(9senΘ))dx

    ∫(cosΘ/senΘ)dx

    ∫(cosΘ/senΘ)(9cosΘ)

    ∫9/senΘdΘ

    9 ∫1/senΘdΘ

    9 ∫cscΘdΘ

    9[Ln IcscΘ - ctgΘI + C]

    x = 9senΘ --> cscΘ = 9/x

    x/9 = senΘ,al graficar un triangulo rectangulo cosΘ = √(81 - x²) / 9

    entonces ctgΘ = √(81 - x²) / x

    9[Ln I9/x - √(81 - x²) / xI + C]

    9[Ln I(9 - √(81 - x²))/xI + C]

Still have questions? Get your answers by asking now.