Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

¿Encuentra la integral indefinida usando substitucion trigonometrica?

∫(x)/(√(x²+121))dx

1 Answer

Rating
  • 10 years ago
    Favorite Answer

    Hola,

    escribamos la integral como:

    ∫ [x /√(x² + 11²)] dx =

    pongamos:

    x = 11tanθ

    tanθ = x/11

    dx = 11sec²θ dθ

    obteniendo:

    ∫ [x /√(x² + 11²)] dx = ∫ {11tanθ /√[(11tanθ)² + 11²]} 11sec²θ dθ =

    ∫ [11tanθ /√(11²tan²θ + 11²)] 11sec²θ dθ =

    ∫ {11tanθ /√[11² (tan²θ + 1)]} 11sec²θ dθ =

    (reemplazando tan²θ + 1 con sec²θ)

    ∫ [11tanθ /√(11²sec²θ)] 11sec²θ dθ =

    ∫ [11tanθ /(11secθ)] 11sec²θ dθ =

    (simplificando y sacando la constante)

    11 ∫ tanθ secθ dθ =

    (siendo tanθ secθ la derivada de secθ)

    11secθ + C

    recordemos que tanθ = x/11

    por tanto:

    secθ = √(tan²θ + 1) = √[(x/11)² + 1] = √[(x²/121) + 1] = √[(x² + 121)/121] =

    [√(x² + 121)] /11

    luego, substituyendo:

    11secθ + C = 11 {[√(x² + 121)] /11} + C =

    √(x² + 121) + C

    la respuesta es:

    ∫ [x /√(x² + 121)] dx = √(x² + 121) + C

    espero que sea de ayuda

    ¡Saludos!

Still have questions? Get your answers by asking now.