Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Simplify into first power of cosine: cos^2(x)*sin^4(x)?

I had this question in a tutoring session, and i couldnt figure it out.

2 Answers

Relevance
  • 9 years ago
    Favorite Answer

    cos^2(x)sin^4(x)

    = cos^2(x)[sin^2(x)]^2

    = cos^2(x)[1 - cos^2(x)]^2

    = cos^2(x)[1 - 2cos^2(x) + cos^4(x)]

    = cos^2(x) - 2cos^4(x) + cos^6(x) .......... (1)

    Now we need to do a bit of work with cos(2x), cos(4x) and cos(6x) :

    cos(2x) = 2cos^2(x) - 1

    Therefore, cos^2(x) = [cos(2x) + 1]/2 .......... (2)

    cos(4x) = cos[2(2x)]

    = 2cos^2(2x) - 1

    = 2[2cos^2(x) - 1]^2 - 1

    = 2[4cos^4(x) - 4cos^2(x) + 1] - 1

    = 8cos^4(x) - 8cos^2(x) + 1

    Substitute from (2) :

    cos(4x) = 8cos^4(x) - 8[cos(2x) + 1]/2 + 1

    = 8cos^4(x) - 4cos(2x) - 3

    Therefore, cos^4(x) = [cos(4x) + 4cos(2x) + 3]/8 .......... (3)

    cos(3x) = cos(2x + x)

    = cos(2x)cos(x) - sin(2x)sin(x)

    = [2cos^2(x) - 1]cos(x) - 2sin^2(x)cos(x)

    = 2cos^3(x) - cos(x) - 2[1 - cos^2(x)]cos(x)

    = 2cos^3(x) - cos(x) - 2cos(x) + 2cos^3(x)

    = 4cos^3(x) - 3cos(x)

    Now, cos(6x) = cos[2(3x)]

    = 2cos^2(3x) - 1

    = 2[4cos^3(x) - 3cos(x)]^2 - 1

    = 2[16 cos^6(x) - 24cos^4(x) + 9cos^2(x)] - 1

    = 32cos^6(x) - 48cos^4(x) + 18cos^2(x) - 1

    Substitute from (2) and (3) :

    cos(6x) = 32cos^6(x) - 48[cos(4x) + 4cos(2x) + 3]/8 + 18[cos(2x) + 1]/2 - 1

    = 32cos^6(x) - 6cos(4x) - 24cos(2x) - 18 + 9cos(2x) + 9 - 1

    = 32cos^6(x) - 6cos(4x) - 15cos(2x) - 10

    Therefore, cos^6(x) = [cos(6x) + 6cos(4x) + 15cos(2x) +10]/32 .......... (4)

    Now substitute (2), (3) and (4) into (1) :

    cos^2(x)sin^4(x)

    = [cos(2x) + 1]/2 - 2[cos(4x) + 4cos(2x) + 3]/8 +

    [cos(6x) + 6cos(4x) + 15cos(2x) + 10]/32

    = (1/32)[16cos(2x) + 16 - 8cos(4x) - 32cos(2x) - 24 +

    cos(6x) + 6cos(4x) + 15cos(2x) + 10]

    = (1/32)[cos(6x) - 2cos(4x) - cos(2x) + 2] (= final answer)

  • KevinM
    Lv 7
    9 years ago

    cos(2x) = 2cos^2(x) - 1 = (1 - 2sin^2x). So:

    cos^2(x) = 1/2 (cos(2x) + 1)

    sin^2(x) = -1/2 (cos(2x) - 1)

    Now just plug in:

    = 1/8 (cos(2x) + 1)(cos(2x) - 1)^2

    You can further simplify this - as you can see you'll end up with a cos^3(2x) term... and you'll get a nasty long expression.

Still have questions? Get your answers by asking now.