Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Find the unique solution of the differential equation y''+8y'+16y=0 when y(0)=5 and y'(0)=-16?
I got (5-36t)e^(4t) but that's not right. Do you know what I did wrong?
2 Answers
- GeronimoLv 79 years agoFavorite Answer
y'' + 8y' + 16y = 0 ... y(0) = 5 , y'(0) = -16
assume: y = e^(λx)
[e^(λx) ]'' + 8[e^(λx) ]' + 16[e^(λx) ] = 0
λ² e^(λx) + 8 λ e^(λx) + 16 e^(λx) = 0
e^(λx) • (λ² + 8 λ + 16) = 0
λ² + 8 λ + 16 = 0
(λ + 4)² = 0
λ = - 4 ... multiplicity = 2 , or it's a double zero
yı = (Cı) • e^(- 4x) and yıı = (Cıı) • e^(- 4x) • x
y = yı + yıı
y = (Cı) • e^(- 4x) + (Cıı) • e^(- 4x) • x
y' = - 4(Cı) • e^(- 4x) + (Cıı) • e^(- 4x) + - 4(Cıı) • x • e^(- 4x)
y(0) = (Cı) + (Cıı) • x
y'(0) = - 4(Cı) + (Cıı) + - 4(Cıı) • x
5 = (Cı) + (Cıı) • x
-16 = - 4(Cı) + (Cıı) + - 4(Cıı) • x
——————————————————<solve>
Cı = 5 and Cıı = 4
y = 5e^(- 4x) + 4e^(- 4x) • x
y = e^(- 4x) • [ 5 + 4x ]
- 5 years ago
Why does the y2 have and extra x multiplied to the general solution....that s the part my teacher didn t explain well