Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
5 Answers
- PaulR2Lv 77 years agoFavorite Answer
∫ ( tan⁴x / 4 ) dx
Remember, ∫ tan^n(x) dx = tan^(n-1)(x) - ∫ tan^(n-2)(x) dx
Ignore the ¼, it's a constant we'll just divide the final answer by 4.
∫ ( tan⁴x ) dx = ( tan³x / 3 ) - ∫ tan²x dx
Rememeber, tan²x + 1 = sec²x
∫ ( tan⁴x ) dx = ( tan³x / 3 ) - ∫ ( sec²x - 1 ) dx
∫ ( tan⁴x ) dx = ( tan³x / 3 ) - ( tan(x) - x )
∫ ( tan⁴x ) dx = ( tan³x / 3 ) - tan(x) + x
∫ ( tan⁴x / 4 ) dx = ( ( tan³x / 3 ) - tan(x) + x ) / 4
- RameshwarLv 77 years ago
int tan^4x/4 dx
=1/4 int tan^2x* tan^2x dx
= 1/4 int tan^2x( sec^2x - 1) dx
= 1/4int tan^2x* sec^2x dx - 1/4 int tan^2x dx
= 1/4 tan^3x/3 - 1/4[ int (sec^2x - 1) dx
= 1/12 tna^3x - 1/4[tanx + x/4 +C
= 1/12[ 3x +tanx( tan^2x- 3) + C
= 1/12 [ 3x +tanx( sec^2x - 4) ] +c
- Anonymous7 years ago
tan^(4x)/4 = [ tan^2(x) (1 +tan^2(x) ) - (tan^2 (x) + 1) + 1]/4
integral of [ tan^2(x) (1 +tan^2(x) ) - (tan^2 (x) + 1) + 1]/4 dx = (1/4)[ tan^3(x) / 3 - tan(x) + x] + C
- 7 years ago
take
I =Integral tan^4x dx
I = Integral tan^2x.tan^2x dx
I = integral tan^2x(sec^2x-1) dx
I = Integra [tan^2xsec^2x-tan^2x] dx
I = Integraltan^2x.sec^2x dx - Integral tan^2x dx
I = Integral tan^2x.d(tanx) - Integral tan^2x dx [ Integration by parts method]
I = tan^2x.tanx - Integral tanx d(tan^2x) - Integral tan^2x dx
I = tan^3x - Integral (tanx.2tanx sec^2x) dx - Integral tan^2x dx
I = tan^3x - 2.Integral (tan^2x(1+tan^2x) dx - Integral tan^2x dx
I = tan^3x - 2.integral[tan^2x+tan^4x] dx - Integral tan^2x dx
I = tan^3x - 2.Integral tan^2x dx - 2.Integral tan^4x dx - Integral tan^2x dx
I = tan^3x - 2I - 3.Integral tan^2x dx
I+2I = tan^3x - 3.Integral (sec^2x-1) dx
3I = tan^3x - 3 tanx -3x + C/3
I = 1/3. tan^3x - tanx -x + C
Integral tan^4x dx = 1/3. tan^3x - tanx -x + C
- How do you think about the answers? You can sign in to vote the answer.
- Sky - VhinLv 67 years ago
int(tan^4x/4)dx = 1/4 int (tan²x tan²x)dx
= 1/4 int [tan²x(sec²x -1)]dx
= 1/4 int tan²xsec²x dx - 1/4 int(tan²x) dx
= 1/4 int tan²xsec²x dx - 1/4 int(sec²x - 1) dx
= 1/4 int tan²xsec²x dx - 1/4 int(sec²x)dx +1/4 int dx
in the first term,
u = tan x; du = sec²x; n = 2
= (1/4)*[(tan^3x)/3] - 1/4 tanx + x/4 + C
= 1/12 tan^3x - 1/4 tanx + x/4 + C