Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and the Yahoo Answers website is now in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Help with trigonometry !?
Prove that.
tanA tanA + secA +1
--------- = ---------------------
secA -1 secA-1 + tanA
Sorry, its
tanA tanA + secA +1
--------- = ---------------------
secA -1 secA-1 + tanA
Damn it ! I am sorry its getting all messed up after i upload it.
its
tanA/secA-1 = tanA + secA + 1/secA - 1 + tanA
(tanA/secA-1) = (tanA + secA + 1/secA - 1 + tanA)
5 Answers
- ?Lv 67 years ago
I am going to take a guess that the left side is: (tanA) / (secA - 1), and the right side is (tanA + secA + 1) / (secA - 1 + tanA).
And it looks like maybe I was right. I tried several test values for A, and the two sides do equal.
Next, what do we have in terms of trig identities. I include a link to a handy one, below.
So what about the one tan²A + 1 = sec²A ?
Rearrange this to be tan²A = sec²A - 1.
So this can factor out to tan²A = sec²A - 1 = (secA + 1)(secA - 1). Maybe that can help.
Source(s): http://bitly.com/trigiden - ComoLv 77 years ago
Would like to help but , unfortunately , presentation is unclear and open to doubt.
- M3Lv 77 years ago
........... tanA
LHS = ---------
.......... secA-1
mulriply top & bottom by secA+1
.. tanA.(secA+1)
= ---------------------
....... sec²A-1
.....tanA(1+cosA)/cosA
= -----------------------------
............ tan²A
.... 1+cosA
= -------------
..... sinA
..........tanA + secA + 1
RHS =---------------------
.......... tanA + secA - 1
multiply top & bottom by cosA
.... sinA + 1 + cosA
= ------------------------
.... sinA +1 - cosA
multiply top & bottom by (sinA + 1 + cosA)
... sin²A + 1 + 2sinA + cos²A + 2sinA.cosA +2cosA
= ---------------------------------------------------------------
............. sin²A + 1 + 2sinA - cos²A
.... 2 + 2sinA + 2sinAcosA + 2cosA
= -------------------------------------------
............. 2sinA(1+sinA)
...... 2(1+cosA) +2sinA(1+cosA)
= --------------------------------------------
.... 2sinA(1+cosA)
......(1+cosA)
= ------------------
...... sinA
so proved LHS = RHS