Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Integral x/sqrt(x^2-4x)?

2 Answers

Relevance
  • 7 years ago
    Favorite Answer

    Hello,

    let's complete the square inside the root by adding and subtracting 4:

    ∫ {x /√[(x² - 4x + 4) - 4]} dx =

    let's write the radicand as a difference of two squares:

    ∫ {x /√[(x - 2)² - 2²]} dx =

    let:

    x - 2 = 2secθ → secθ = (x - 2)/2

    x = 2secθ + 2

    dx = 2tanθ secθ dθ

    yielding, by trig subtitution:

    ∫ {x /√[(x - 2)² - 2²]} dx = ∫ {(2secθ + 2) /√[(2secθ)² - 2²]} 2tanθ secθ dθ =

    ∫ [(2secθ + 2) /√(2²sec²θ - 2²)] 2tanθ secθ dθ =

    ∫ {(2secθ + 2) /√[2²(sec²θ - 1)]} 2tanθ secθ dθ =

    (applying the identity sec²θ - 1 = tan²θ)

    ∫ [(2secθ + 2) /√(2²tan²θ)] 2tanθ secθ dθ =

    ∫ [(2secθ + 2) /(2tanθ)] 2tanθ secθ dθ =

    simplifying to:

    ∫ [(2secθ + 2) secθ dθ =

    ∫ (2sec²θ + 2secθ) dθ =

    (splitting into two integrals and factoring constants out)

    2 ∫ sec²θ dθ + 2 ∫ secθ dθ =

    2tanθ + 2 ∫ secθ dθ =

    le's multiply the remaining integrand by (tanθ + secθ) /(secθ +

    tanθ) (= 1):

    2tanθ + 2 ∫ secθ [(tanθ + secθ) /(secθ + tanθ)] dθ =

    obtaining in the numerator the derivative of the denominator:

    2tanθ + 2 ∫ [(tanθ secθ + sec²θ) /(secθ + tanθ)] dθ =

    2tanθ + 2 ∫ d(secθ + tanθ) /(secθ + tanθ) =

    2tanθ + 2 ln |secθ + tanθ| + C

    let's recall that secθ = (x - 2)/2

    hence:

    tanθ = √(sec²θ - 1) = √{[(x - 2)/2]² - 1} =

    √{[(x² - 4x + 4)/4] - 1} =

    √[(x² - 4x + 4 - 4)/4] =

    [√(x² - 4x)] /2

    then, substituting back:

    2tanθ + 2 ln |secθ + tanθ| + C = 2 {[√(x² - 4x)] /2} + 2 ln | [(x -

    2)/2] + {[√(x² - 4x)] /2} | + C =

    √(x² - 4x) + 2 ln | [(x - 2) + √(x² - 4x)] /2 | + C =

    (by logarithm properties)

    √(x² - 4x) + 2 [ln |x - 2 + √(x² - 4x)| - ln 2} + C =

    √(x² - 4x) + 2 ln |x - 2 + √(x² - 4x)| - 2 ln 2 + C =

    being - 2 ln 2 a constant, it can be included in C, ending with:

    √(x² - 4x) + 2 ln |x - 2 + √(x² - 4x)| + C

    I hope it's helpful

  • cidyah
    Lv 7
    7 years ago

    ∫ x dx / sqrt(x^2-4x)

    x^2-4x= x^2-4x+4-4 = (x-2)^2 - 4

    ∫ x dx / sqrt(x^2-4x) = ∫ x dx / sqrt( (x-2)^2 -4)

    Let u= x-2

    du = dx

    ∫ x dx / sqrt( (x-2)^2 -4) = ∫ (u+2) du / sqrt( u^2-4)

    Let u= 2 sec t

    du = 2 sec t tan t dt

    u^2-4 = 4 sec^2 t - 4 = 4(sec^2 t -1) = 4 tan^2 t

    sqrt(u^2-4) = 2 tan t

    ∫ (u+2) du / sqrt( u^2-4) = ∫ (2 sec t + 2) ( 2 sec t tan t ) dt / (2 tan t)

    = ∫ (2 sec t + 2) sec t dt

    = 2 ∫ sec^2 t dt + 2 ∫ sec t dt

    = 2 tan t + 2 ln ( sec t + tan t)

    transform t back to u

    u = 2 sec t

    sec t = u/2

    tan t = sqrt(sec^2 t -1) = sqrt( u^2 /4 -1) = sqrt(u^2-4) / sqrt(4) = (1/2) sqrt(u^2-4)

    2 tan t + 2 ln ( sec t + tan t) = 2 (1/2) sqrt(u^2-4) + 2 ln ( u / 2 + sqrt( u^2-4) / 2)

    = sqrt(u^2-4) + 2 ln ( u / 2 + sqrt( u^2-4) / 2)

    replace u by x-2

    = sqrt( (x-2)^2 -4) + 2 ln ( (x-2) / 2 + sqrt( (x-2)^2 - 4) / 2 )

    = sqrt( x^2-4x) + 2 ln ( ( x-2) / 2 + sqrt(x^2-4x) /2 )

    ∫ x dx / sqrt(x^2-4x) = sqrt( x^2-4x) + 2 ln ( ( x-2) / 2 + sqrt(x^2-4x) /2 ) + C

Still have questions? Get your answers by asking now.