Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
2 Answers
- germanoLv 77 years agoFavorite Answer
Hello,
let's complete the square inside the root by adding and subtracting 4:
∫ {x /√[(x² - 4x + 4) - 4]} dx =
let's write the radicand as a difference of two squares:
∫ {x /√[(x - 2)² - 2²]} dx =
let:
x - 2 = 2secθ → secθ = (x - 2)/2
x = 2secθ + 2
dx = 2tanθ secθ dθ
yielding, by trig subtitution:
∫ {x /√[(x - 2)² - 2²]} dx = ∫ {(2secθ + 2) /√[(2secθ)² - 2²]} 2tanθ secθ dθ =
∫ [(2secθ + 2) /√(2²sec²θ - 2²)] 2tanθ secθ dθ =
∫ {(2secθ + 2) /√[2²(sec²θ - 1)]} 2tanθ secθ dθ =
(applying the identity sec²θ - 1 = tan²θ)
∫ [(2secθ + 2) /√(2²tan²θ)] 2tanθ secθ dθ =
∫ [(2secθ + 2) /(2tanθ)] 2tanθ secθ dθ =
simplifying to:
∫ [(2secθ + 2) secθ dθ =
∫ (2sec²θ + 2secθ) dθ =
(splitting into two integrals and factoring constants out)
2 ∫ sec²θ dθ + 2 ∫ secθ dθ =
2tanθ + 2 ∫ secθ dθ =
le's multiply the remaining integrand by (tanθ + secθ) /(secθ +
tanθ) (= 1):
2tanθ + 2 ∫ secθ [(tanθ + secθ) /(secθ + tanθ)] dθ =
obtaining in the numerator the derivative of the denominator:
2tanθ + 2 ∫ [(tanθ secθ + sec²θ) /(secθ + tanθ)] dθ =
2tanθ + 2 ∫ d(secθ + tanθ) /(secθ + tanθ) =
2tanθ + 2 ln |secθ + tanθ| + C
let's recall that secθ = (x - 2)/2
hence:
tanθ = √(sec²θ - 1) = √{[(x - 2)/2]² - 1} =
√{[(x² - 4x + 4)/4] - 1} =
√[(x² - 4x + 4 - 4)/4] =
[√(x² - 4x)] /2
then, substituting back:
2tanθ + 2 ln |secθ + tanθ| + C = 2 {[√(x² - 4x)] /2} + 2 ln | [(x -
2)/2] + {[√(x² - 4x)] /2} | + C =
√(x² - 4x) + 2 ln | [(x - 2) + √(x² - 4x)] /2 | + C =
(by logarithm properties)
√(x² - 4x) + 2 [ln |x - 2 + √(x² - 4x)| - ln 2} + C =
√(x² - 4x) + 2 ln |x - 2 + √(x² - 4x)| - 2 ln 2 + C =
being - 2 ln 2 a constant, it can be included in C, ending with:
√(x² - 4x) + 2 ln |x - 2 + √(x² - 4x)| + C
I hope it's helpful
- cidyahLv 77 years ago
∫ x dx / sqrt(x^2-4x)
x^2-4x= x^2-4x+4-4 = (x-2)^2 - 4
∫ x dx / sqrt(x^2-4x) = ∫ x dx / sqrt( (x-2)^2 -4)
Let u= x-2
du = dx
∫ x dx / sqrt( (x-2)^2 -4) = ∫ (u+2) du / sqrt( u^2-4)
Let u= 2 sec t
du = 2 sec t tan t dt
u^2-4 = 4 sec^2 t - 4 = 4(sec^2 t -1) = 4 tan^2 t
sqrt(u^2-4) = 2 tan t
∫ (u+2) du / sqrt( u^2-4) = ∫ (2 sec t + 2) ( 2 sec t tan t ) dt / (2 tan t)
= ∫ (2 sec t + 2) sec t dt
= 2 ∫ sec^2 t dt + 2 ∫ sec t dt
= 2 tan t + 2 ln ( sec t + tan t)
transform t back to u
u = 2 sec t
sec t = u/2
tan t = sqrt(sec^2 t -1) = sqrt( u^2 /4 -1) = sqrt(u^2-4) / sqrt(4) = (1/2) sqrt(u^2-4)
2 tan t + 2 ln ( sec t + tan t) = 2 (1/2) sqrt(u^2-4) + 2 ln ( u / 2 + sqrt( u^2-4) / 2)
= sqrt(u^2-4) + 2 ln ( u / 2 + sqrt( u^2-4) / 2)
replace u by x-2
= sqrt( (x-2)^2 -4) + 2 ln ( (x-2) / 2 + sqrt( (x-2)^2 - 4) / 2 )
= sqrt( x^2-4x) + 2 ln ( ( x-2) / 2 + sqrt(x^2-4x) /2 )
∫ x dx / sqrt(x^2-4x) = sqrt( x^2-4x) + 2 ln ( ( x-2) / 2 + sqrt(x^2-4x) /2 ) + C