Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Calculus 2 help - Initial Value Problem?
Solve the initial-value problem.
y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4
I keep getting
y=2e^(-2x)cos(sqrt(2)x)+8e^(-2x)sin(sqrt(2)x)
But apparently I am wrong and I don't know what I am doing wrong. Please help.
2 Answers
- cidyahLv 77 years ago
y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4
r^2+4r+6=0
This equation is of form ax^2+bx+c
a = 1 b = 4 c = 6
x=[-b+/-sqrt(b^2-4ac)]/2a]
x=[-4 +/-sqrt(4^2-4(1)(6)]/(2)(1)
discriminant is b^2-4ac =-8
i^2 = -1, so √i^2 = i
No real roots: The complex roots are
x=[-4 +i √(8)] / (2)(1)
x=[-4 -i √(8)] / (2)(1)
x= -2+√2 i
x = -2 -√2 i
y = C1 e^(-2x) cos(√2 x) + C2 e^(-2x) sin(√2 x)
y(0) = 2
2 = C1 e^(0) cos (0) + C2 e^(0) sin(0)
2 = C1 (1) + C2(0)
C1 = 2
y' = -2 C1 e^(-2x) cos(√2 x) - √2 C1 e^(-2x) sin(√2 x) -2 C2 e^(-2x) sin(√2 x) + √2 C2 e^(-2x) cos(√2 x)
y'(0) = 4
4 = -2C1 e^(0) cos(0) - √2 C1 e^(0) sin(0) -2 C2 e^(0) sin(0) + √2 C2 e^(0) cos(0)
4 = -2C1 - 0 - 0 + √2 C2
4 = -2(2) + √2 C2
8 = √2 C2
C2 = 8 / √2
C2 = 4√2
y = C1 e^(-2x) cos(√2 x) + C2 e^(-2x) sin(√2 x)
y = 2 e^(-2x) cos(√2 x) + 4√2 e^(-2x) sin(√2 x)
- KarlLv 67 years ago
y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4
r² + 4r + 6 = 0
r = -2 +/-√-2 , no real solutions
r1 = -2 + i√2
r2 = -2 - i√2
y = A* e^(-2+i√2)x + B* e^(-2-i√2)x , You know the formula: y = e^(ix) = cosx + isinx
y = A*e^(-2x)(cos√2x + i sin√2x) + B*e^(-2x)(cos√2x - i sin√2x)
y = e^(-2x)[(A + B)*cos√2x + i (A - B)sin√2x]
y = e^(-2x)[ C1 cos√2x + C2 sin√2x]
y' = (-2)e^(-2x)[C1 cos√2x + C2 sin√2x] + e^(-2x)*[C1√2*(-sin√2x) + C2√2*(cos√2x)]
2 = y(0) = 1*[C1*1 + C2*0] => C1 = 2
4 = y'(0) = (-2)*1[C1 + 0] + 1*[0 + C2√2*1]
4 = -2C1 + C2√2 = -4 + C2√2 => C2 = 8/√2 = 4√2
Finally:
y = e^(-2x)*(2cos√2x + 4√2sin√2x)
==========================