Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Calculus 2 help - Initial Value Problem?

Update:

Solve the initial-value problem.

y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4

I keep getting

y=2e^(-2x)cos(sqrt(2)x)+8e^(-2x)sin(sqrt(2)x)

But apparently I am wrong and I don't know what I am doing wrong. Please help.

2 Answers

Relevance
  • cidyah
    Lv 7
    7 years ago

    y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4

    r^2+4r+6=0

    This equation is of form ax^2+bx+c

    a = 1 b = 4 c = 6

    x=[-b+/-sqrt(b^2-4ac)]/2a]

    x=[-4 +/-sqrt(4^2-4(1)(6)]/(2)(1)

    discriminant is b^2-4ac =-8

    i^2 = -1, so √i^2 = i

    No real roots: The complex roots are

    x=[-4 +i √(8)] / (2)(1)

    x=[-4 -i √(8)] / (2)(1)

    x= -2+√2 i

    x = -2 -√2 i

    y = C1 e^(-2x) cos(√2 x) + C2 e^(-2x) sin(√2 x)

    y(0) = 2

    2 = C1 e^(0) cos (0) + C2 e^(0) sin(0)

    2 = C1 (1) + C2(0)

    C1 = 2

    y' = -2 C1 e^(-2x) cos(√2 x) - √2 C1 e^(-2x) sin(√2 x) -2 C2 e^(-2x) sin(√2 x) + √2 C2 e^(-2x) cos(√2 x)

    y'(0) = 4

    4 = -2C1 e^(0) cos(0) - √2 C1 e^(0) sin(0) -2 C2 e^(0) sin(0) + √2 C2 e^(0) cos(0)

    4 = -2C1 - 0 - 0 + √2 C2

    4 = -2(2) + √2 C2

    8 = √2 C2

    C2 = 8 / √2

    C2 = 4√2

    y = C1 e^(-2x) cos(√2 x) + C2 e^(-2x) sin(√2 x)

    y = 2 e^(-2x) cos(√2 x) + 4√2 e^(-2x) sin(√2 x)

  • Karl
    Lv 6
    7 years ago

    y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4

    r² + 4r + 6 = 0

    r = -2 +/-√-2 , no real solutions

    r1 = -2 + i√2

    r2 = -2 - i√2

    y = A* e^(-2+i√2)x + B* e^(-2-i√2)x , You know the formula: y = e^(ix) = cosx + isinx

    y = A*e^(-2x)(cos√2x + i sin√2x) + B*e^(-2x)(cos√2x - i sin√2x)

    y = e^(-2x)[(A + B)*cos√2x + i (A - B)sin√2x]

    y = e^(-2x)[ C1 cos√2x + C2 sin√2x]

    y' = (-2)e^(-2x)[C1 cos√2x + C2 sin√2x] + e^(-2x)*[C1√2*(-sin√2x) + C2√2*(cos√2x)]

    2 = y(0) = 1*[C1*1 + C2*0] => C1 = 2

    4 = y'(0) = (-2)*1[C1 + 0] + 1*[0 + C2√2*1]

    4 = -2C1 + C2√2 = -4 + C2√2 => C2 = 8/√2 = 4√2

    Finally:

    y = e^(-2x)*(2cos√2x + 4√2sin√2x)

    ==========================

Still have questions? Get your answers by asking now.