Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

How can I find the numerical value of (0.997)^5 to five correct decimal places using the binomial theorem?

4 Answers

Relevance
  • 6 years ago

    0.997 = 1 - 0.003

    (0.997)^5 = (1 - 0.003)^5

    Binomial theorem gives you

    (a + b)^5 =

    a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5

    (where the coefficient is found with (5!)/[(n!)(5-n)!]

    and the "first term" is actually number zero (n=0)

    (remember that 0! = 1)

    Use a=1

    b = -0.03

    a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5

    becomes

    1 + 5(1)(-0.003) + 10(1)(-0.003)^2 etc.

    = 1 - 0.015 + 0.00009 - 0.00000027 + ...

    (I would stop here, as the following terms keep getting smaller, and you only need 5 decimals)

    ---

    The signs alternate + - + -

    because you are using a negative value (for b)

    when it is raised to an even power (b^2, b^4), it becomes positive

    when it is raised to an odd power (b, b^3, b^5) it remains negative.

  • 6 years ago

    To obtain the result correct to 5 decimal places you need only expand as far as terms in x^2 since x=3x10^-3 so x^2=9x10^-6.

    (0.997)^5=(1-0.003)^5

    =(1-x)^5

    =1-5x+10x^2-...

    =1-(5*3x10^-3)+(10*9x10^-6)-...

    =1-0.015+0.000090-...

    =0.98509.

  • 6 years ago

    (1-X)^5

    With X=0.003

    Binominally expand (1-X)^5

    Then substitute in X.

    e.g:

    1 + 5(-X) + (5x4)/2 x (-X)^2 + (5x4x3)/(2x3) x (-X)^3 + (5x4x3x2)/(2x3x4) x (-X)^4 + (5x4x3x2x1)/(2x3x4x5) x (-X)^5

    Which simplifies to:

    1 - 5X + 10X^2 - 10X^3 + 5X^4 - X^5

    Substitute in X=0.003

    1 - 5(0.003) + 10(0.003)^2 - 10(0.003)^3 + 5(0.003)^4 - (0.003)^5

    (uses calculator)...

    = 0.98509

  • 0.997^5 =>

    (1 - 0.003)^5

    (a - b)^5 =>

    a^5 - 5a^4 * b + 10a^3 * b^2 - 10a^2 * b^3 + 5a * b^4 - b^5

    1^5 - 5 * 1^4 * 0.003 + 10 * 1^3 * 0.003^2 - 10 * 1^2 * 0.003^3 + 5 * 1 * 0.003^4 - 0.003^5 =>

    1 - 5 * 3 * 10^(-3) + 10 * 3^2 * 10^(-6) - 10 * 3^3 * 10^(-9) + 5 * 3^4 * 10^(-12) - 3^5 * 10^(-15) =>

    1 - 15 * 0.001 + 90 * 0.000001 - 270 * 0.000000001 + 405 * 0.000000000001 - 243 * 0.000000000000001 =>

    1 - 0.015 + 0.000090 - 0.000000270 + 0.000000000405 - 0.000000000000243 =>

    1.000 000 000 000 000 - 0.015 000 000 000 000 + 0.000 090 000 000 000 - 0.000 000 270 000 000 + 0.000 000 000 405 000 - 0.000 000 000 000 243

    1.000 000 000 000 000

    0.000 090 000 000 000

    0.000 000 000 405 000

    1.000 090 000 405 000

    0.015 000 000 000 000

    0.000 000 270 000 000

    0.000 000 000 000 243

    0.015 000 270 000 243

    1.000 090 000 405 000 - 0.015 000 270 000 243

    1.000 090 000 405 000

    0.015 000 270 000 243

    .985 089 730 404 757

Still have questions? Get your answers by asking now.