Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
1 Answer
- germanoLv 76 years agoFavorite Answer
Hello,
∫ arcsinx arccosx dx =
let's consider that arccosx = (π/2) - arcsinx
(proof:
let arcsinx = t → sin t = x → (by the co-function identity sin t = cos[(π/2) - t]) → cos[(π/2) - t] = x;
if cos[(π/2) - t] = x, then (π/2) - t = arccosx → (substituting back arcsinx for t) → (π/2) - arcsinx = arccosx)
so the integral becomes:
∫ arcsinx [(π/2) - arcsinx] dx =
let:
arcsinx = t
hence:
x = sin t
dx = cos t dt
yielding, by substitution:
∫ arcsinx [(π/2) - arcsinx] dx = ∫ t [(π/2) - t] cos t dt =
∫ [(π/2)t - t²] cos t dt =
let's integrate by parts, letting:
(π/2)t - t² = u → [(π/2) - 2t] dt = du
cos t dt = dv → sin t = v
yielding:
∫ u dv = u v - ∫ v du
∫ [(π/2)t - t²] cos t dt = [(π/2)t - t²] sin t - ∫ sin t [(π/2) - 2t] dt =
(adjusting signs)
[(π/2)t - t²] sin t - ∫ [2t - (π/2)] (- sin t) dt =
let's integrate by parts further, letting:
2t - (π/2) = u → 2 dt = du
- sin t dt = dv → cos t = v
yielding:
∫ u dv = u v - ∫ v du
[(π/2)t - t²] sin t - {[2t - (π/2)] cos t - ∫ cos t 2 dt} =
(factoring the constant out)
[(π/2)t - t²] sin t - [2t - (π/2)] cos t + 2 ∫ cos t dt =
[(π/2)t - t²] sin t - [2t - (π/2)] cos t + 2sin t + C =
t [(π/2) - t] sin t - [2t - (π/2)] cos t + 2sin t + C =
let's now recall that:
t = arcsinx
sin t = x
hence:
cos t = √(1 - sin²t) = √(1 - x²)
then, substituting back:
t [(π/2) - t] sin t - [2t - (π/2)] cos t + 2sin t + C = arcsinx [(π/2) - arcsinx] x - [2arcsinx - (π/2)] √(1 - x²) + 2x + C =
arcsinx [(π/2) - arcsinx] x + [(π/2) - 2arcsinx] √(1 - x²) + 2x + C =
(splitting - 2arcsinx into - arcsinx - arcsinx)
arcsinx [(π/2) - arcsinx] x + [(π/2) - arcsinx - arcsinx] √(1 - x²) + 2x + C =
arcsinx [(π/2) - arcsinx] x + {[(π/2) - arcsinx] - arcsinx} √(1 - x²) + 2x + C =
(recalling that (π/2) - arcsinx = arccosx)
(arcsinx arccosx) x + (arccosx - arcsinx) √(1 - x²) + 2x + C =
ending with:
(arcsinx arccosx + 2) x + (arccosx - arcsinx)√(1 - x²) + C
I hope it's helpful