Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
If tanA = n / n+1 , and tanB = 1 / 2n+1 then find (A+B)?
Find the solution for the above trigo question please.
3 Answers
- Mein Hoon NaLv 76 years agoFavorite Answer
tan A = n/(n+1)
tan B= 1/(2n+1)
tan (A+B) = (tan A + tan B)/(1 - tan A + tan B) = ( n/(n+1) - 1/(2n+1)/( 1- n/(n+1) * 1/(2n+1))
= ( n(2n + 1) - (n+1))/((n+1)(2n+1) - (n+ 1)) = 1
as A and B both < pi/2 so so A + B < pi so A + B = pi/4
- DWReadLv 76 years ago
Needs parentheses!
tanA = n/(n+1)
tanB = 1/(2n+1)
A+B = arctan(n/(n+1)) + arctan(n/(2n+1))
- 6 years ago
tan(a) = n / (n + 1)
tan(b) = 1 / (2n + 1)
a = arctan(n / (n + 1))
b = arctan(1 / (2n + 1))
a + b = arctan(n / (n + 1)) + arctan(1 / (2n + 1))
tan(a + b) = tan(arctan(n / (n + 1)) + arctan(1 / (2n + 1))
tan(a + b) = (tan(arctan(n / (n + 1)) + tan(arctan(1 / (2n + 1))) / (1 - tan(arctan(n / (n + 1)) * tan(arctan(1 / (2n + 1)))
tan(a + b) = (n/(n + 1) + 1/(2n + 1)) / (1 - n * 1 / ((n + 1) * (2n + 1)))
tan(a + b) = ((n * (2n + 1) + 1 * (n + 1)) / ((n + 1) * (2n + 1) - n)
tan(a + b) = (2n^2 + n + n + 1) / (2n^2 + n + 2n + 1 - n)
tan(a + b) = (2n^2 + 2n + 1) / (2n^2 + 2n + 1)
tan(a + b) = 1
a + b = arctan(1)
a + b = pi/4