Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Find the alternate form of this trig function?
sin^(2)(3x)/(1-cos(2x)
1 Answer
- germanoLv 75 years agoFavorite Answer
Hello,
sin²(3x) /[1 - cos(2x)] =
let's write the numerator, splitting the argument, as:
[sin(2x + x)]² /[1 - cos(2x)] =
let's apply the addition formula sin(α + β) = sin α cos β + cos α sin β:
[sin(2x) cosx + cos(2x) sinx]² /[1 - cos(2x)] =
let's apply the double-angle formula sin(2x) = 2sinx cosx:
[(2sinx cosx) cosx + cos(2x) sinx]² /[1 - cos(2x)] =
[2sinx cos²x + cos(2x) sinx]² /[1 - cos(2x)] =
let's factor out sinx in the numerator:
{sinx [2cos²x + cos(2x)]}² /[1 - cos(2x)] =
{sin²x [2cos²x + cos(2x)]²} /[1 - cos(2x)] =
let's apply (in both the numerator and the denominator) the double-angle formula
cos(2x) = cos²x - sin²x:
{sin²x [2cos²x + (cos²x - sin²x)]²} /[1 - (cos²x - sin²x)] =
[sin²x (2cos²x + cos²x - sin²x)²] /(1 - cos²x + sin²x) =
letìs apply (in the denominator) the basic identity 1 = sin²x + cos²x:
[sin²x (3cos²x - sin²x)²] /[(sin²x + cos²x) - cos²x + sin²x] =
[sin²x (3cos²x - sin²x)²] /(sin²x + cos²x - cos²x + sin²x) =
[sin²x (3cos²x - sin²x)²] /(2sin²x) =
simplifying to:
(3cos²x - sin²x)² /2 =
let's apply the identity sin²x = 1 - cos²x:
[3cos²x - (1 - cos²x)]² /2 =
(3cos²x - 1 + cos²x)² /2 =
(4cos²x - 1)² /2
I hope it's helpful